This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zringlpir . A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zringlpirlem.i | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) | |
| zringlpirlem.n0 | ⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) | ||
| Assertion | zringlpirlem1 | ⊢ ( 𝜑 → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringlpirlem.i | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) | |
| 2 | zringlpirlem.n0 | ⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) | |
| 3 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → 𝑎 ∈ 𝐼 ) | |
| 4 | eleq1 | ⊢ ( ( abs ‘ 𝑎 ) = 𝑎 → ( ( abs ‘ 𝑎 ) ∈ 𝐼 ↔ 𝑎 ∈ 𝐼 ) ) | |
| 5 | 3 4 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( ( abs ‘ 𝑎 ) = 𝑎 → ( abs ‘ 𝑎 ) ∈ 𝐼 ) ) |
| 6 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 7 | subrgsubg | ⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ℤ ∈ ( SubGrp ‘ ℂfld ) |
| 9 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 10 | eqid | ⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) | |
| 11 | 9 10 | lidlss | ⊢ ( 𝐼 ∈ ( LIdeal ‘ ℤring ) → 𝐼 ⊆ ℤ ) |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝐼 ⊆ ℤ ) |
| 13 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ ℤ ) |
| 14 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 15 | eqid | ⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) | |
| 16 | eqid | ⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) | |
| 17 | 14 15 16 | subginv | ⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑎 ∈ ℤ ) → ( ( invg ‘ ℂfld ) ‘ 𝑎 ) = ( ( invg ‘ ℤring ) ‘ 𝑎 ) ) |
| 18 | 8 13 17 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℂfld ) ‘ 𝑎 ) = ( ( invg ‘ ℤring ) ‘ 𝑎 ) ) |
| 19 | 13 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ ℂ ) |
| 20 | cnfldneg | ⊢ ( 𝑎 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑎 ) = - 𝑎 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℂfld ) ‘ 𝑎 ) = - 𝑎 ) |
| 22 | 18 21 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℤring ) ‘ 𝑎 ) = - 𝑎 ) |
| 23 | zringring | ⊢ ℤring ∈ Ring | |
| 24 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) |
| 25 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ 𝐼 ) | |
| 26 | 10 16 | lidlnegcl | ⊢ ( ( ℤring ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ ℤring ) ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℤring ) ‘ 𝑎 ) ∈ 𝐼 ) |
| 27 | 23 24 25 26 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( invg ‘ ℤring ) ‘ 𝑎 ) ∈ 𝐼 ) |
| 28 | 22 27 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → - 𝑎 ∈ 𝐼 ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → - 𝑎 ∈ 𝐼 ) |
| 30 | eleq1 | ⊢ ( ( abs ‘ 𝑎 ) = - 𝑎 → ( ( abs ‘ 𝑎 ) ∈ 𝐼 ↔ - 𝑎 ∈ 𝐼 ) ) | |
| 31 | 29 30 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( ( abs ‘ 𝑎 ) = - 𝑎 → ( abs ‘ 𝑎 ) ∈ 𝐼 ) ) |
| 32 | 13 | zred | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → 𝑎 ∈ ℝ ) |
| 33 | 32 | absord | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) → ( ( abs ‘ 𝑎 ) = 𝑎 ∨ ( abs ‘ 𝑎 ) = - 𝑎 ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( ( abs ‘ 𝑎 ) = 𝑎 ∨ ( abs ‘ 𝑎 ) = - 𝑎 ) ) |
| 35 | 5 31 34 | mpjaod | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ 𝐼 ) |
| 36 | nnabscl | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ ℕ ) | |
| 37 | 13 36 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ ℕ ) |
| 38 | 35 37 | elind | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 39 | 38 | ne0d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐼 ) ∧ 𝑎 ≠ 0 ) → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |
| 40 | zring0 | ⊢ 0 = ( 0g ‘ ℤring ) | |
| 41 | 10 40 | lidlnz | ⊢ ( ( ℤring ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ ℤring ) ∧ 𝐼 ≠ { 0 } ) → ∃ 𝑎 ∈ 𝐼 𝑎 ≠ 0 ) |
| 42 | 23 1 2 41 | mp3an2i | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐼 𝑎 ≠ 0 ) |
| 43 | 39 42 | r19.29a | ⊢ ( 𝜑 → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |