This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zringlpir . A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Revised by AV, 27-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zringlpirlem.i | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) | |
| zringlpirlem.n0 | ⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) | ||
| zringlpirlem.g | ⊢ 𝐺 = inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) | ||
| Assertion | zringlpirlem2 | ⊢ ( 𝜑 → 𝐺 ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringlpirlem.i | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ℤring ) ) | |
| 2 | zringlpirlem.n0 | ⊢ ( 𝜑 → 𝐼 ≠ { 0 } ) | |
| 3 | zringlpirlem.g | ⊢ 𝐺 = inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) | |
| 4 | inss2 | ⊢ ( 𝐼 ∩ ℕ ) ⊆ ℕ | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | 4 5 | sseqtri | ⊢ ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) |
| 7 | 1 2 | zringlpirlem1 | ⊢ ( 𝜑 → ( 𝐼 ∩ ℕ ) ≠ ∅ ) |
| 8 | infssuzcl | ⊢ ( ( ( 𝐼 ∩ ℕ ) ⊆ ( ℤ≥ ‘ 1 ) ∧ ( 𝐼 ∩ ℕ ) ≠ ∅ ) → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ ( 𝐼 ∩ ℕ ) ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( 𝜑 → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ ( 𝐼 ∩ ℕ ) ) |
| 10 | 9 | elin1d | ⊢ ( 𝜑 → inf ( ( 𝐼 ∩ ℕ ) , ℝ , < ) ∈ 𝐼 ) |
| 11 | 3 10 | eqeltrid | ⊢ ( 𝜑 → 𝐺 ∈ 𝐼 ) |