This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express equality of equivalence classes in ZZ / n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zncyg.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| zndvds.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| Assertion | zndvds | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 𝐵 ) ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zncyg.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | zndvds.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 3 | eqcom | ⊢ ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 𝐵 ) ↔ ( 𝐿 ‘ 𝐵 ) = ( 𝐿 ‘ 𝐴 ) ) | |
| 4 | eqid | ⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) | |
| 5 | eqid | ⊢ ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) = ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) | |
| 6 | 4 5 1 2 | znzrhval | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ) → ( 𝐿 ‘ 𝐵 ) = [ 𝐵 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐿 ‘ 𝐵 ) = [ 𝐵 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
| 8 | 4 5 1 2 | znzrhval | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐿 ‘ 𝐴 ) = [ 𝐴 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐿 ‘ 𝐴 ) = [ 𝐴 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐵 ) = ( 𝐿 ‘ 𝐴 ) ↔ [ 𝐵 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) = [ 𝐴 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
| 11 | zringring | ⊢ ℤring ∈ Ring | |
| 12 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 14 | 13 | snssd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { 𝑁 } ⊆ ℤ ) |
| 15 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 16 | eqid | ⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) | |
| 17 | 4 15 16 | rspcl | ⊢ ( ( ℤring ∈ Ring ∧ { 𝑁 } ⊆ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
| 18 | 11 14 17 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
| 19 | 16 | lidlsubg | ⊢ ( ( ℤring ∈ Ring ∧ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( SubGrp ‘ ℤring ) ) |
| 20 | 11 18 19 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( SubGrp ‘ ℤring ) ) |
| 21 | 15 5 | eqger | ⊢ ( ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( SubGrp ‘ ℤring ) → ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) Er ℤ ) |
| 22 | 20 21 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) Er ℤ ) |
| 23 | simp3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) | |
| 24 | 22 23 | erth | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) 𝐴 ↔ [ 𝐵 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) = [ 𝐴 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
| 25 | zringabl | ⊢ ℤring ∈ Abel | |
| 26 | 15 16 | lidlss | ⊢ ( ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ℤ ) |
| 27 | 18 26 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ℤ ) |
| 28 | eqid | ⊢ ( -g ‘ ℤring ) = ( -g ‘ ℤring ) | |
| 29 | 15 28 5 | eqgabl | ⊢ ( ( ℤring ∈ Abel ∧ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ℤ ) → ( 𝐵 ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) 𝐴 ↔ ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
| 30 | 25 27 29 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) 𝐴 ↔ ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
| 31 | simp2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 32 | 23 31 | jca | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
| 33 | 32 | biantrurd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ↔ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
| 34 | df-3an | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ↔ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) | |
| 35 | 33 34 | bitr4di | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
| 36 | zsubrg | ⊢ ℤ ∈ ( SubRing ‘ ℂfld ) | |
| 37 | subrgsubg | ⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) | |
| 38 | 36 37 | mp1i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) |
| 39 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
| 40 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 41 | 39 40 28 | subgsub | ⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ) |
| 42 | 38 41 | syld3an1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ) |
| 43 | 42 | eqcomd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 44 | dvdsrzring | ⊢ ∥ = ( ∥r ‘ ℤring ) | |
| 45 | 15 4 44 | rspsn | ⊢ ( ( ℤring ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
| 46 | 11 13 45 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
| 47 | 43 46 | eleq12d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ↔ ( 𝐴 − 𝐵 ) ∈ { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) ) |
| 48 | ovex | ⊢ ( 𝐴 − 𝐵 ) ∈ V | |
| 49 | breq2 | ⊢ ( 𝑥 = ( 𝐴 − 𝐵 ) → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) | |
| 50 | 48 49 | elab | ⊢ ( ( 𝐴 − 𝐵 ) ∈ { 𝑥 ∣ 𝑁 ∥ 𝑥 } ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) |
| 51 | 47 50 | bitrdi | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 52 | 30 35 51 | 3bitr2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) 𝐴 ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 53 | 10 24 52 | 3bitr2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐵 ) = ( 𝐿 ‘ 𝐴 ) ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 54 | 3 53 | bitrid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 𝐵 ) ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |