This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 2 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 3 | eqid | ⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) | |
| 4 | eqid | ⊢ ( -g ‘ ℂfld ) = ( -g ‘ ℂfld ) | |
| 5 | 1 2 3 4 | grpsubval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) = ( 𝑥 + ( ( invg ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 6 | cnfldneg | ⊢ ( 𝑦 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝑦 ) = - 𝑦 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( invg ‘ ℂfld ) ‘ 𝑦 ) = - 𝑦 ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + ( ( invg ‘ ℂfld ) ‘ 𝑦 ) ) = ( 𝑥 + - 𝑦 ) ) |
| 9 | negsub | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + - 𝑦 ) = ( 𝑥 − 𝑦 ) ) | |
| 10 | 5 8 9 | 3eqtrrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 − 𝑦 ) = ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) |
| 11 | 10 | mpoeq3ia | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) |
| 12 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 13 | ffn | ⊢ ( − : ( ℂ × ℂ ) ⟶ ℂ → − Fn ( ℂ × ℂ ) ) | |
| 14 | 12 13 | ax-mp | ⊢ − Fn ( ℂ × ℂ ) |
| 15 | fnov | ⊢ ( − Fn ( ℂ × ℂ ) ↔ − = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) ) | |
| 16 | 14 15 | mpbi | ⊢ − = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) |
| 17 | cnring | ⊢ ℂfld ∈ Ring | |
| 18 | ringgrp | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) | |
| 19 | 17 18 | ax-mp | ⊢ ℂfld ∈ Grp |
| 20 | 1 4 | grpsubf | ⊢ ( ℂfld ∈ Grp → ( -g ‘ ℂfld ) : ( ℂ × ℂ ) ⟶ ℂ ) |
| 21 | ffn | ⊢ ( ( -g ‘ ℂfld ) : ( ℂ × ℂ ) ⟶ ℂ → ( -g ‘ ℂfld ) Fn ( ℂ × ℂ ) ) | |
| 22 | 19 20 21 | mp2b | ⊢ ( -g ‘ ℂfld ) Fn ( ℂ × ℂ ) |
| 23 | fnov | ⊢ ( ( -g ‘ ℂfld ) Fn ( ℂ × ℂ ) ↔ ( -g ‘ ℂfld ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) ) | |
| 24 | 22 23 | mpbi | ⊢ ( -g ‘ ℂfld ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 ( -g ‘ ℂfld ) 𝑦 ) ) |
| 25 | 11 16 24 | 3eqtr4i | ⊢ − = ( -g ‘ ℂfld ) |