This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| rspcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rspcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
| Assertion | rspcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcl.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 2 | rspcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | rspcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 4 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 5 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 6 | 2 5 | eqtri | ⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 7 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 8 | 3 7 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 9 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 10 | 1 9 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 | 6 8 10 | lspcl | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝑈 ) |
| 12 | 4 11 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵 ) → ( 𝐾 ‘ 𝐺 ) ∈ 𝑈 ) |