This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgsubcl.p | ⊢ − = ( -g ‘ 𝐺 ) | |
| subgsub.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| subgsub.n | ⊢ 𝑁 = ( -g ‘ 𝐻 ) | ||
| Assertion | subgsub | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 𝑁 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgsubcl.p | ⊢ − = ( -g ‘ 𝐺 ) | |
| 2 | subgsub.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 3 | subgsub.n | ⊢ 𝑁 = ( -g ‘ 𝐻 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 5 | 2 4 | ressplusg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 7 | eqidd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 = 𝑋 ) | |
| 8 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 10 | 2 8 9 | subginv | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) |
| 12 | 6 7 11 | oveq123d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 14 | 13 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | simp2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 17 | 15 16 | sseldd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 18 | simp3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ 𝑆 ) | |
| 19 | 15 18 | sseldd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ ( Base ‘ 𝐺 ) ) |
| 20 | 13 4 8 1 | grpsubval | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 21 | 17 19 20 | syl2anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 22 | 2 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 24 | 16 23 | eleqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 25 | 18 23 | eleqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ ( Base ‘ 𝐻 ) ) |
| 26 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 27 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 28 | 26 27 9 3 | grpsubval | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐻 ) ∧ 𝑌 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑋 𝑁 𝑌 ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
| 29 | 24 25 28 | syl2anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 𝑁 𝑌 ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
| 30 | 12 21 29 | 3eqtr4d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 𝑁 𝑌 ) ) |