This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znzrh2.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| znzrh2.r | ⊢ ∼ = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) | ||
| znzrh2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| znzrh2.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| Assertion | znzrhval | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐿 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrh2.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| 2 | znzrh2.r | ⊢ ∼ = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) | |
| 3 | znzrh2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 4 | znzrh2.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 5 | 1 2 3 4 | znzrh2 | ⊢ ( 𝑁 ∈ ℕ0 → 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ) |
| 6 | 5 | fveq1d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐿 ‘ 𝐴 ) = ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ‘ 𝐴 ) ) |
| 7 | eceq1 | ⊢ ( 𝑥 = 𝐴 → [ 𝑥 ] ∼ = [ 𝐴 ] ∼ ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) | |
| 9 | 2 | ovexi | ⊢ ∼ ∈ V |
| 10 | ecexg | ⊢ ( ∼ ∈ V → [ 𝐴 ] ∼ ∈ V ) | |
| 11 | 9 10 | ax-mp | ⊢ [ 𝐴 ] ∼ ∈ V |
| 12 | 7 8 11 | fvmpt | ⊢ ( 𝐴 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
| 13 | 6 12 | sylan9eq | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐿 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |