This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspsn.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rspsn.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | ||
| rspsn.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| Assertion | rspsn | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspsn.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rspsn.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 3 | rspsn.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 4 | eqcom | ⊢ ( 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) | |
| 5 | 4 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
| 6 | 5 | rexbidv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
| 7 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 8 | rlmsca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 9 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 10 | 9 1 | strfvi | ⊢ 𝐵 = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 11 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 12 | 1 11 | eqtri | ⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 13 | rlmvsca | ⊢ ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 14 | rspval | ⊢ ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 15 | 2 14 | eqtri | ⊢ 𝐾 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) ) |
| 16 | 8 10 12 13 15 | ellspsn | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ) ) |
| 17 | 7 16 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ ∃ 𝑎 ∈ 𝐵 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) ) ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 1 3 18 | dvdsr2 | ⊢ ( 𝐺 ∈ 𝐵 → ( 𝐺 ∥ 𝑥 ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∥ 𝑥 ↔ ∃ 𝑎 ∈ 𝐵 ( 𝑎 ( .r ‘ 𝑅 ) 𝐺 ) = 𝑥 ) ) |
| 21 | 6 17 20 | 3bitr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ 𝐺 ∥ 𝑥 ) ) |
| 22 | 21 | eqabdv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |