This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ZZ . (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsrzring | ⊢ ∥ = ( ∥r ‘ ℤring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑥 ∈ ℤ ) | |
| 2 | 1 | anim1i | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
| 3 | simpl | ⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑥 ∈ ℤ ) | |
| 4 | zmulcl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑧 · 𝑥 ) ∈ ℤ ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 · 𝑥 ) ∈ ℤ ) |
| 6 | eleq1 | ⊢ ( ( 𝑧 · 𝑥 ) = 𝑦 → ( ( 𝑧 · 𝑥 ) ∈ ℤ ↔ 𝑦 ∈ ℤ ) ) | |
| 7 | 5 6 | syl5ibcom | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑧 · 𝑥 ) = 𝑦 → 𝑦 ∈ ℤ ) ) |
| 8 | 7 | rexlimdva | ⊢ ( 𝑥 ∈ ℤ → ( ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 → 𝑦 ∈ ℤ ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑦 ∈ ℤ ) |
| 10 | simpr | ⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) | |
| 11 | 3 9 10 | jca31 | ⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
| 12 | 2 11 | impbii | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
| 13 | 12 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } |
| 14 | df-dvds | ⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } | |
| 15 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 16 | eqid | ⊢ ( ∥r ‘ ℤring ) = ( ∥r ‘ ℤring ) | |
| 17 | zringmulr | ⊢ · = ( .r ‘ ℤring ) | |
| 18 | 15 16 17 | dvdsrval | ⊢ ( ∥r ‘ ℤring ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } |
| 19 | 13 14 18 | 3eqtr4i | ⊢ ∥ = ( ∥r ‘ ℤring ) |