This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| Assertion | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | 2 1 | lidlss | ⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 5 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 6 | 1 5 | lidl0cl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 7 | 6 | ne0d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ≠ ∅ ) |
| 8 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 9 | 1 8 | lidlacl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
| 10 | 9 | anassrs | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
| 11 | 10 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ) |
| 12 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 13 | 1 12 | lidlnegcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ 𝐼 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) |
| 14 | 13 | 3expa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) |
| 15 | 11 14 | jca | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) |
| 16 | 15 | ralrimiva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) |
| 17 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝑅 ∈ Grp ) |
| 19 | 2 8 12 | issubg2 | ⊢ ( 𝑅 ∈ Grp → ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) ) |
| 20 | 18 19 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐼 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ 𝐼 ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐼 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝐼 ) ) ) ) |
| 21 | 4 7 16 20 | mpbir3and | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |