This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: By quantifying only over reals, we can specify any extended real upper bound for any set of extended reals. (Contributed by NM, 9-Apr-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 < 𝐵 ↔ 𝑧 < 𝐵 ) ) | |
| 2 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 < 𝑦 ↔ 𝑧 < 𝑦 ) ) | |
| 3 | 2 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 4 | 1 3 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 6 | elxr | ⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) | |
| 7 | pm2.27 | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) | |
| 8 | 7 | a1i | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 9 | pnfnlt | ⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) | |
| 10 | breq1 | ⊢ ( 𝑥 = +∞ → ( 𝑥 < 𝐵 ↔ +∞ < 𝐵 ) ) | |
| 11 | 10 | notbid | ⊢ ( 𝑥 = +∞ → ( ¬ 𝑥 < 𝐵 ↔ ¬ +∞ < 𝐵 ) ) |
| 12 | 9 11 | imbitrrid | ⊢ ( 𝑥 = +∞ → ( 𝐵 ∈ ℝ* → ¬ 𝑥 < 𝐵 ) ) |
| 13 | pm2.21 | ⊢ ( ¬ 𝑥 < 𝐵 → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) | |
| 14 | 12 13 | syl6com | ⊢ ( 𝐵 ∈ ℝ* → ( 𝑥 = +∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = +∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 16 | 15 | a1dd | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = +∞ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 17 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 18 | peano2rem | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) ∈ ℝ ) | |
| 19 | breq1 | ⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( 𝑧 < 𝐵 ↔ ( 𝐵 − 1 ) < 𝐵 ) ) | |
| 20 | breq1 | ⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( 𝑧 < 𝑦 ↔ ( 𝐵 − 1 ) < 𝑦 ) ) | |
| 21 | 20 | rexbidv | ⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 22 | 19 21 | imbi12d | ⊢ ( 𝑧 = ( 𝐵 − 1 ) → ( ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 23 | 22 | rspcv | ⊢ ( ( 𝐵 − 1 ) ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 24 | 18 23 | syl | ⊢ ( 𝐵 ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) ) |
| 26 | ltm1 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) < 𝐵 ) | |
| 27 | id | ⊢ ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) | |
| 28 | 26 27 | syl5com | ⊢ ( 𝐵 ∈ ℝ → ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐵 − 1 ) < 𝐵 → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 ) ) |
| 30 | 18 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 − 1 ) ∈ ℝ ) |
| 31 | mnflt | ⊢ ( ( 𝐵 − 1 ) ∈ ℝ → -∞ < ( 𝐵 − 1 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → -∞ < ( 𝐵 − 1 ) ) |
| 33 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 34 | 30 | rexrd | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 − 1 ) ∈ ℝ* ) |
| 35 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) | |
| 36 | 35 | adantlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 37 | xrlttr | ⊢ ( ( -∞ ∈ ℝ* ∧ ( 𝐵 − 1 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( -∞ < ( 𝐵 − 1 ) ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ < 𝑦 ) ) | |
| 38 | 33 34 36 37 | mp3an2i | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( -∞ < ( 𝐵 − 1 ) ∧ ( 𝐵 − 1 ) < 𝑦 ) → -∞ < 𝑦 ) ) |
| 39 | 32 38 | mpand | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐵 − 1 ) < 𝑦 → -∞ < 𝑦 ) ) |
| 40 | 39 | reximdva | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝐵 − 1 ) < 𝑦 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 41 | 25 29 40 | 3syld | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 42 | 41 | a1dd | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 43 | 1re | ⊢ 1 ∈ ℝ | |
| 44 | breq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 < 𝐵 ↔ 1 < 𝐵 ) ) | |
| 45 | breq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 < 𝑦 ↔ 1 < 𝑦 ) ) | |
| 46 | 45 | rexbidv | ⊢ ( 𝑧 = 1 → ( ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
| 47 | 44 46 | imbi12d | ⊢ ( 𝑧 = 1 → ( ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ↔ ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) ) |
| 48 | 47 | rspcv | ⊢ ( 1 ∈ ℝ → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) ) |
| 49 | 43 48 | ax-mp | ⊢ ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
| 50 | ltpnf | ⊢ ( 1 ∈ ℝ → 1 < +∞ ) | |
| 51 | 43 50 | ax-mp | ⊢ 1 < +∞ |
| 52 | breq2 | ⊢ ( 𝐵 = +∞ → ( 1 < 𝐵 ↔ 1 < +∞ ) ) | |
| 53 | 51 52 | mpbiri | ⊢ ( 𝐵 = +∞ → 1 < 𝐵 ) |
| 54 | id | ⊢ ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) | |
| 55 | 53 54 | syl5com | ⊢ ( 𝐵 = +∞ → ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) ) |
| 56 | mnflt | ⊢ ( 1 ∈ ℝ → -∞ < 1 ) | |
| 57 | 43 56 | ax-mp | ⊢ -∞ < 1 |
| 58 | rexr | ⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) | |
| 59 | 43 58 | ax-mp | ⊢ 1 ∈ ℝ* |
| 60 | xrlttr | ⊢ ( ( -∞ ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( -∞ < 1 ∧ 1 < 𝑦 ) → -∞ < 𝑦 ) ) | |
| 61 | 33 59 60 | mp3an12 | ⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ < 1 ∧ 1 < 𝑦 ) → -∞ < 𝑦 ) ) |
| 62 | 57 61 | mpani | ⊢ ( 𝑦 ∈ ℝ* → ( 1 < 𝑦 → -∞ < 𝑦 ) ) |
| 63 | 35 62 | syl | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → ( 1 < 𝑦 → -∞ < 𝑦 ) ) |
| 64 | 63 | reximdva | ⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑦 ∈ 𝐴 1 < 𝑦 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 65 | 55 64 | sylan9r | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ( 1 < 𝐵 → ∃ 𝑦 ∈ 𝐴 1 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 66 | 49 65 | syl5 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 67 | 66 | a1dd | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = +∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 68 | xrltnr | ⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) | |
| 69 | 33 68 | ax-mp | ⊢ ¬ -∞ < -∞ |
| 70 | breq2 | ⊢ ( 𝐵 = -∞ → ( -∞ < 𝐵 ↔ -∞ < -∞ ) ) | |
| 71 | 69 70 | mtbiri | ⊢ ( 𝐵 = -∞ → ¬ -∞ < 𝐵 ) |
| 72 | 71 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ¬ -∞ < 𝐵 ) |
| 73 | 72 | pm2.21d | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 74 | 73 | a1d | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 = -∞ ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 75 | 42 67 74 | 3jaodan | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 76 | 17 75 | sylan2b | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 77 | 76 | imp | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 78 | breq1 | ⊢ ( 𝑥 = -∞ → ( 𝑥 < 𝐵 ↔ -∞ < 𝐵 ) ) | |
| 79 | breq1 | ⊢ ( 𝑥 = -∞ → ( 𝑥 < 𝑦 ↔ -∞ < 𝑦 ) ) | |
| 80 | 79 | rexbidv | ⊢ ( 𝑥 = -∞ → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) |
| 81 | 78 80 | imbi12d | ⊢ ( 𝑥 = -∞ → ( ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ( -∞ < 𝐵 → ∃ 𝑦 ∈ 𝐴 -∞ < 𝑦 ) ) ) |
| 82 | 77 81 | syl5ibrcom | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = -∞ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 83 | 82 | a1dd | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 = -∞ → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 84 | 8 16 83 | 3jaod | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 85 | 6 84 | biimtrid | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( 𝑥 ∈ ℝ* → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 86 | 85 | com23 | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 87 | 86 | ralimdv2 | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 88 | 87 | ex | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑧 ∈ ℝ ( 𝑧 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑧 < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 89 | 5 88 | biimtrid | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) ) |
| 90 | 89 | pm2.43d | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 91 | rexr | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) | |
| 92 | 91 | imim1i | ⊢ ( ( 𝑥 ∈ ℝ* → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ( 𝑥 ∈ ℝ → ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |
| 93 | 92 | ralimi2 | ⊢ ( ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
| 94 | 90 93 | impbid1 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) |