This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006) (Revised by Mario Carneiro, 21-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → 𝐵 ∈ ℝ* ) | |
| 2 | simprl | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ) | |
| 3 | xrub | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) | |
| 4 | 3 | biimpa | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
| 5 | 4 | adantrl | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) |
| 6 | xrltso | ⊢ < Or ℝ* | |
| 7 | 6 | a1i | ⊢ ( ⊤ → < Or ℝ* ) |
| 8 | 7 | eqsup | ⊢ ( ⊤ → ( ( 𝐵 ∈ ℝ* ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) ) |
| 9 | 8 | mptru | ⊢ ( ( 𝐵 ∈ ℝ* ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ* ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |
| 10 | 1 2 5 9 | syl3anc | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ) ) ) → sup ( 𝐴 , ℝ* , < ) = 𝐵 ) |