This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrltnr | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | ltnr | ⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴 ) | |
| 3 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 4 | 3 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 5 | 4 | intnan | ⊢ ¬ ( +∞ ∈ ℝ ∧ +∞ ∈ ℝ ) |
| 6 | 5 | intnanr | ⊢ ¬ ( ( +∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ +∞ <ℝ +∞ ) |
| 7 | pnfnemnf | ⊢ +∞ ≠ -∞ | |
| 8 | 7 | neii | ⊢ ¬ +∞ = -∞ |
| 9 | 8 | intnanr | ⊢ ¬ ( +∞ = -∞ ∧ +∞ = +∞ ) |
| 10 | 6 9 | pm3.2ni | ⊢ ¬ ( ( ( +∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ +∞ <ℝ +∞ ) ∨ ( +∞ = -∞ ∧ +∞ = +∞ ) ) |
| 11 | 4 | intnanr | ⊢ ¬ ( +∞ ∈ ℝ ∧ +∞ = +∞ ) |
| 12 | 4 | intnan | ⊢ ¬ ( +∞ = -∞ ∧ +∞ ∈ ℝ ) |
| 13 | 11 12 | pm3.2ni | ⊢ ¬ ( ( +∞ ∈ ℝ ∧ +∞ = +∞ ) ∨ ( +∞ = -∞ ∧ +∞ ∈ ℝ ) ) |
| 14 | 10 13 | pm3.2ni | ⊢ ¬ ( ( ( ( +∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ +∞ <ℝ +∞ ) ∨ ( +∞ = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ +∞ = +∞ ) ∨ ( +∞ = -∞ ∧ +∞ ∈ ℝ ) ) ) |
| 15 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 16 | ltxr | ⊢ ( ( +∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( +∞ < +∞ ↔ ( ( ( ( +∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ +∞ <ℝ +∞ ) ∨ ( +∞ = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ +∞ = +∞ ) ∨ ( +∞ = -∞ ∧ +∞ ∈ ℝ ) ) ) ) ) | |
| 17 | 15 15 16 | mp2an | ⊢ ( +∞ < +∞ ↔ ( ( ( ( +∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ +∞ <ℝ +∞ ) ∨ ( +∞ = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ +∞ = +∞ ) ∨ ( +∞ = -∞ ∧ +∞ ∈ ℝ ) ) ) ) |
| 18 | 14 17 | mtbir | ⊢ ¬ +∞ < +∞ |
| 19 | breq12 | ⊢ ( ( 𝐴 = +∞ ∧ 𝐴 = +∞ ) → ( 𝐴 < 𝐴 ↔ +∞ < +∞ ) ) | |
| 20 | 19 | anidms | ⊢ ( 𝐴 = +∞ → ( 𝐴 < 𝐴 ↔ +∞ < +∞ ) ) |
| 21 | 18 20 | mtbiri | ⊢ ( 𝐴 = +∞ → ¬ 𝐴 < 𝐴 ) |
| 22 | mnfnre | ⊢ -∞ ∉ ℝ | |
| 23 | 22 | neli | ⊢ ¬ -∞ ∈ ℝ |
| 24 | 23 | intnan | ⊢ ¬ ( -∞ ∈ ℝ ∧ -∞ ∈ ℝ ) |
| 25 | 24 | intnanr | ⊢ ¬ ( ( -∞ ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ -∞ <ℝ -∞ ) |
| 26 | 7 | nesymi | ⊢ ¬ -∞ = +∞ |
| 27 | 26 | intnan | ⊢ ¬ ( -∞ = -∞ ∧ -∞ = +∞ ) |
| 28 | 25 27 | pm3.2ni | ⊢ ¬ ( ( ( -∞ ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ -∞ <ℝ -∞ ) ∨ ( -∞ = -∞ ∧ -∞ = +∞ ) ) |
| 29 | 23 | intnanr | ⊢ ¬ ( -∞ ∈ ℝ ∧ -∞ = +∞ ) |
| 30 | 23 | intnan | ⊢ ¬ ( -∞ = -∞ ∧ -∞ ∈ ℝ ) |
| 31 | 29 30 | pm3.2ni | ⊢ ¬ ( ( -∞ ∈ ℝ ∧ -∞ = +∞ ) ∨ ( -∞ = -∞ ∧ -∞ ∈ ℝ ) ) |
| 32 | 28 31 | pm3.2ni | ⊢ ¬ ( ( ( ( -∞ ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ -∞ <ℝ -∞ ) ∨ ( -∞ = -∞ ∧ -∞ = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ -∞ = +∞ ) ∨ ( -∞ = -∞ ∧ -∞ ∈ ℝ ) ) ) |
| 33 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 34 | ltxr | ⊢ ( ( -∞ ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( -∞ < -∞ ↔ ( ( ( ( -∞ ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ -∞ <ℝ -∞ ) ∨ ( -∞ = -∞ ∧ -∞ = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ -∞ = +∞ ) ∨ ( -∞ = -∞ ∧ -∞ ∈ ℝ ) ) ) ) ) | |
| 35 | 33 33 34 | mp2an | ⊢ ( -∞ < -∞ ↔ ( ( ( ( -∞ ∈ ℝ ∧ -∞ ∈ ℝ ) ∧ -∞ <ℝ -∞ ) ∨ ( -∞ = -∞ ∧ -∞ = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ -∞ = +∞ ) ∨ ( -∞ = -∞ ∧ -∞ ∈ ℝ ) ) ) ) |
| 36 | 32 35 | mtbir | ⊢ ¬ -∞ < -∞ |
| 37 | breq12 | ⊢ ( ( 𝐴 = -∞ ∧ 𝐴 = -∞ ) → ( 𝐴 < 𝐴 ↔ -∞ < -∞ ) ) | |
| 38 | 37 | anidms | ⊢ ( 𝐴 = -∞ → ( 𝐴 < 𝐴 ↔ -∞ < -∞ ) ) |
| 39 | 36 38 | mtbiri | ⊢ ( 𝐴 = -∞ → ¬ 𝐴 < 𝐴 ) |
| 40 | 2 21 39 | 3jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ¬ 𝐴 < 𝐴 ) |
| 41 | 1 40 | sylbi | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 ) |