This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wunex2.f | ⊢ 𝐹 = ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) | |
| wunex2.u | ⊢ 𝑈 = ∪ ran 𝐹 | ||
| Assertion | wunex2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunex2.f | ⊢ 𝐹 = ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) | |
| 2 | wunex2.u | ⊢ 𝑈 = ∪ ran 𝐹 | |
| 3 | 2 | eleq2i | ⊢ ( 𝑎 ∈ 𝑈 ↔ 𝑎 ∈ ∪ ran 𝐹 ) |
| 4 | frfnom | ⊢ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) Fn ω | |
| 5 | 1 | fneq1i | ⊢ ( 𝐹 Fn ω ↔ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) Fn ω ) |
| 6 | 4 5 | mpbir | ⊢ 𝐹 Fn ω |
| 7 | fnunirn | ⊢ ( 𝐹 Fn ω → ( 𝑎 ∈ ∪ ran 𝐹 ↔ ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( 𝑎 ∈ ∪ ran 𝐹 ↔ ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) |
| 9 | 3 8 | bitri | ⊢ ( 𝑎 ∈ 𝑈 ↔ ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) |
| 10 | elssuni | ⊢ ( 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) → 𝑎 ⊆ ∪ ( 𝐹 ‘ 𝑚 ) ) | |
| 11 | 10 | ad2antll | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑎 ⊆ ∪ ( 𝐹 ‘ 𝑚 ) ) |
| 12 | ssun2 | ⊢ ∪ ( 𝐹 ‘ 𝑚 ) ⊆ ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) | |
| 13 | ssun1 | ⊢ ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) | |
| 14 | 12 13 | sstri | ⊢ ∪ ( 𝐹 ‘ 𝑚 ) ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 15 | 11 14 | sstrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑎 ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 16 | simprl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑚 ∈ ω ) | |
| 17 | fvex | ⊢ ( 𝐹 ‘ 𝑚 ) ∈ V | |
| 18 | 17 | uniex | ⊢ ∪ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 19 | 17 18 | unex | ⊢ ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∈ V |
| 20 | prex | ⊢ { 𝒫 𝑢 , ∪ 𝑢 } ∈ V | |
| 21 | 17 | mptex | ⊢ ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 22 | 21 | rnex | ⊢ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 23 | 20 22 | unex | ⊢ ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 24 | 17 23 | iunex | ⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 25 | 19 24 | unex | ⊢ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V |
| 26 | id | ⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) | |
| 27 | unieq | ⊢ ( 𝑤 = 𝑧 → ∪ 𝑤 = ∪ 𝑧 ) | |
| 28 | 26 27 | uneq12d | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∪ ∪ 𝑤 ) = ( 𝑧 ∪ ∪ 𝑧 ) ) |
| 29 | pweq | ⊢ ( 𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥 ) | |
| 30 | unieq | ⊢ ( 𝑢 = 𝑥 → ∪ 𝑢 = ∪ 𝑥 ) | |
| 31 | 29 30 | preq12d | ⊢ ( 𝑢 = 𝑥 → { 𝒫 𝑢 , ∪ 𝑢 } = { 𝒫 𝑥 , ∪ 𝑥 } ) |
| 32 | preq2 | ⊢ ( 𝑣 = 𝑦 → { 𝑢 , 𝑣 } = { 𝑢 , 𝑦 } ) | |
| 33 | 32 | cbvmptv | ⊢ ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑦 ∈ 𝑤 ↦ { 𝑢 , 𝑦 } ) |
| 34 | preq1 | ⊢ ( 𝑢 = 𝑥 → { 𝑢 , 𝑦 } = { 𝑥 , 𝑦 } ) | |
| 35 | 34 | mpteq2dv | ⊢ ( 𝑢 = 𝑥 → ( 𝑦 ∈ 𝑤 ↦ { 𝑢 , 𝑦 } ) = ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) |
| 36 | 33 35 | eqtrid | ⊢ ( 𝑢 = 𝑥 → ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) |
| 37 | 36 | rneqd | ⊢ ( 𝑢 = 𝑥 → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) |
| 38 | 31 37 | uneq12d | ⊢ ( 𝑢 = 𝑥 → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 39 | 38 | cbviunv | ⊢ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑥 ∈ 𝑤 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) |
| 40 | mpteq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) = ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) | |
| 41 | 40 | rneqd | ⊢ ( 𝑤 = 𝑧 → ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) = ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) |
| 42 | 41 | uneq2d | ⊢ ( 𝑤 = 𝑧 → ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) = ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 43 | 26 42 | iuneq12d | ⊢ ( 𝑤 = 𝑧 → ∪ 𝑥 ∈ 𝑤 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) = ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 44 | 39 43 | eqtrid | ⊢ ( 𝑤 = 𝑧 → ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 45 | 28 44 | uneq12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∪ ∪ 𝑤 ) ∪ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) ) = ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) |
| 46 | id | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → 𝑤 = ( 𝐹 ‘ 𝑚 ) ) | |
| 47 | unieq | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ∪ 𝑤 = ∪ ( 𝐹 ‘ 𝑚 ) ) | |
| 48 | 46 47 | uneq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ( 𝑤 ∪ ∪ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ) |
| 49 | mpteq1 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) | |
| 50 | 49 | rneqd | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) |
| 51 | 50 | uneq2d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 52 | 46 51 | iuneq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 53 | 48 52 | uneq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ( ( 𝑤 ∪ ∪ 𝑤 ) ∪ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) ) = ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 54 | 1 45 53 | frsucmpt2 | ⊢ ( ( 𝑚 ∈ ω ∧ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V ) → ( 𝐹 ‘ suc 𝑚 ) = ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 55 | 16 25 54 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝐹 ‘ suc 𝑚 ) = ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 56 | 15 55 | sseqtrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑎 ⊆ ( 𝐹 ‘ suc 𝑚 ) ) |
| 57 | fvssunirn | ⊢ ( 𝐹 ‘ suc 𝑚 ) ⊆ ∪ ran 𝐹 | |
| 58 | 57 2 | sseqtrri | ⊢ ( 𝐹 ‘ suc 𝑚 ) ⊆ 𝑈 |
| 59 | 56 58 | sstrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑎 ⊆ 𝑈 ) |
| 60 | 59 | rexlimdvaa | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) → 𝑎 ⊆ 𝑈 ) ) |
| 61 | 9 60 | biimtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑎 ∈ 𝑈 → 𝑎 ⊆ 𝑈 ) ) |
| 62 | 61 | ralrimiv | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑎 ∈ 𝑈 𝑎 ⊆ 𝑈 ) |
| 63 | dftr3 | ⊢ ( Tr 𝑈 ↔ ∀ 𝑎 ∈ 𝑈 𝑎 ⊆ 𝑈 ) | |
| 64 | 62 63 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → Tr 𝑈 ) |
| 65 | 1on | ⊢ 1o ∈ On | |
| 66 | unexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1o ∈ On ) → ( 𝐴 ∪ 1o ) ∈ V ) | |
| 67 | 65 66 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∪ 1o ) ∈ V ) |
| 68 | 1 | fveq1i | ⊢ ( 𝐹 ‘ ∅ ) = ( ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ‘ ∅ ) |
| 69 | fr0g | ⊢ ( ( 𝐴 ∪ 1o ) ∈ V → ( ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) | |
| 70 | 68 69 | eqtrid | ⊢ ( ( 𝐴 ∪ 1o ) ∈ V → ( 𝐹 ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) |
| 71 | 67 70 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) |
| 72 | fvssunirn | ⊢ ( 𝐹 ‘ ∅ ) ⊆ ∪ ran 𝐹 | |
| 73 | 72 2 | sseqtrri | ⊢ ( 𝐹 ‘ ∅ ) ⊆ 𝑈 |
| 74 | 71 73 | eqsstrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∪ 1o ) ⊆ 𝑈 ) |
| 75 | 74 | unssbd | ⊢ ( 𝐴 ∈ 𝑉 → 1o ⊆ 𝑈 ) |
| 76 | 1n0 | ⊢ 1o ≠ ∅ | |
| 77 | ssn0 | ⊢ ( ( 1o ⊆ 𝑈 ∧ 1o ≠ ∅ ) → 𝑈 ≠ ∅ ) | |
| 78 | 75 76 77 | sylancl | ⊢ ( 𝐴 ∈ 𝑉 → 𝑈 ≠ ∅ ) |
| 79 | pweq | ⊢ ( 𝑢 = 𝑎 → 𝒫 𝑢 = 𝒫 𝑎 ) | |
| 80 | unieq | ⊢ ( 𝑢 = 𝑎 → ∪ 𝑢 = ∪ 𝑎 ) | |
| 81 | 79 80 | preq12d | ⊢ ( 𝑢 = 𝑎 → { 𝒫 𝑢 , ∪ 𝑢 } = { 𝒫 𝑎 , ∪ 𝑎 } ) |
| 82 | preq1 | ⊢ ( 𝑢 = 𝑎 → { 𝑢 , 𝑣 } = { 𝑎 , 𝑣 } ) | |
| 83 | 82 | mpteq2dv | ⊢ ( 𝑢 = 𝑎 → ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) |
| 84 | 83 | rneqd | ⊢ ( 𝑢 = 𝑎 → ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) |
| 85 | 81 84 | uneq12d | ⊢ ( 𝑢 = 𝑎 → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) ) |
| 86 | 85 | ssiun2s | ⊢ ( 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 87 | 86 | ad2antll | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 88 | ssun2 | ⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) | |
| 89 | 88 55 | sseqtrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( 𝐹 ‘ suc 𝑚 ) ) |
| 90 | 89 58 | sstrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ 𝑈 ) |
| 91 | 87 90 | sstrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ 𝑈 ) |
| 92 | 91 | unssad | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → { 𝒫 𝑎 , ∪ 𝑎 } ⊆ 𝑈 ) |
| 93 | vpwex | ⊢ 𝒫 𝑎 ∈ V | |
| 94 | vuniex | ⊢ ∪ 𝑎 ∈ V | |
| 95 | 93 94 | prss | ⊢ ( ( 𝒫 𝑎 ∈ 𝑈 ∧ ∪ 𝑎 ∈ 𝑈 ) ↔ { 𝒫 𝑎 , ∪ 𝑎 } ⊆ 𝑈 ) |
| 96 | 92 95 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝒫 𝑎 ∈ 𝑈 ∧ ∪ 𝑎 ∈ 𝑈 ) ) |
| 97 | 96 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ∪ 𝑎 ∈ 𝑈 ) |
| 98 | 96 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝒫 𝑎 ∈ 𝑈 ) |
| 99 | 2 | eleq2i | ⊢ ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ ∪ ran 𝐹 ) |
| 100 | fnunirn | ⊢ ( 𝐹 Fn ω → ( 𝑏 ∈ ∪ ran 𝐹 ↔ ∃ 𝑛 ∈ ω 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 101 | 6 100 | ax-mp | ⊢ ( 𝑏 ∈ ∪ ran 𝐹 ↔ ∃ 𝑛 ∈ ω 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 102 | 99 101 | bitri | ⊢ ( 𝑏 ∈ 𝑈 ↔ ∃ 𝑛 ∈ ω 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 103 | ordom | ⊢ Ord ω | |
| 104 | simplrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑚 ∈ ω ) | |
| 105 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑛 ∈ ω ) | |
| 106 | ordunel | ⊢ ( ( Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) | |
| 107 | 103 104 105 106 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 108 | ssun1 | ⊢ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) | |
| 109 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 110 | 109 | sseq2d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑚 ) ) ) |
| 111 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 112 | 111 | sseq2d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ) |
| 113 | fveq2 | ⊢ ( 𝑘 = suc 𝑖 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ suc 𝑖 ) ) | |
| 114 | 113 | sseq2d | ⊢ ( 𝑘 = suc 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) ) |
| 115 | fveq2 | ⊢ ( 𝑘 = ( 𝑚 ∪ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 116 | 115 | sseq2d | ⊢ ( 𝑘 = ( 𝑚 ∪ 𝑛 ) → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 117 | ssidd | ⊢ ( 𝑚 ∈ ω → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑚 ) ) | |
| 118 | fveq2 | ⊢ ( 𝑚 = 𝑖 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 119 | suceq | ⊢ ( 𝑚 = 𝑖 → suc 𝑚 = suc 𝑖 ) | |
| 120 | 119 | fveq2d | ⊢ ( 𝑚 = 𝑖 → ( 𝐹 ‘ suc 𝑚 ) = ( 𝐹 ‘ suc 𝑖 ) ) |
| 121 | 118 120 | sseq12d | ⊢ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑚 ) ↔ ( 𝐹 ‘ 𝑖 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) ) |
| 122 | ssun1 | ⊢ ( 𝐹 ‘ 𝑚 ) ⊆ ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) | |
| 123 | 122 13 | sstri | ⊢ ( 𝐹 ‘ 𝑚 ) ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 124 | 25 54 | mpan2 | ⊢ ( 𝑚 ∈ ω → ( 𝐹 ‘ suc 𝑚 ) = ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 125 | 123 124 | sseqtrrid | ⊢ ( 𝑚 ∈ ω → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑚 ) ) |
| 126 | 121 125 | vtoclga | ⊢ ( 𝑖 ∈ ω → ( 𝐹 ‘ 𝑖 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) |
| 127 | 126 | ad2antrr | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑖 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) |
| 128 | sstr2 | ⊢ ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) → ( ( 𝐹 ‘ 𝑖 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) ) | |
| 129 | 127 128 | syl5com | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) ) |
| 130 | 110 112 114 116 117 129 | findsg | ⊢ ( ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 131 | 108 130 | mpan2 | ⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑚 ∈ ω ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 132 | 107 104 131 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 133 | simplrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) | |
| 134 | 132 133 | sseldd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑎 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 135 | 82 | mpteq2dv | ⊢ ( 𝑢 = 𝑎 → ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) |
| 136 | 135 | rneqd | ⊢ ( 𝑢 = 𝑎 → ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) |
| 137 | 81 136 | uneq12d | ⊢ ( 𝑢 = 𝑎 → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) ) |
| 138 | 137 | ssiun2s | ⊢ ( 𝑎 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 139 | 134 138 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 140 | ssun2 | ⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) | |
| 141 | fvex | ⊢ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V | |
| 142 | 141 | uniex | ⊢ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V |
| 143 | 141 142 | unex | ⊢ ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∈ V |
| 144 | 141 | mptex | ⊢ ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 145 | 144 | rnex | ⊢ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 146 | 20 145 | unex | ⊢ ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 147 | 141 146 | iunex | ⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 148 | 143 147 | unex | ⊢ ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V |
| 149 | id | ⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 150 | unieq | ⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ∪ 𝑤 = ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 151 | 149 150 | uneq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑤 ∪ ∪ 𝑤 ) = ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 152 | mpteq1 | ⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) | |
| 153 | 152 | rneqd | ⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) |
| 154 | 153 | uneq2d | ⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 155 | 149 154 | iuneq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 156 | 151 155 | uneq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( ( 𝑤 ∪ ∪ 𝑤 ) ∪ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) ) = ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 157 | 1 45 156 | frsucmpt2 | ⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V ) → ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) = ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 158 | 107 148 157 | sylancl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) = ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 159 | 140 158 | sseqtrrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) ) |
| 160 | fvssunirn | ⊢ ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) ⊆ ∪ ran 𝐹 | |
| 161 | 160 2 | sseqtrri | ⊢ ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) ⊆ 𝑈 |
| 162 | 159 161 | sstrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ 𝑈 ) |
| 163 | 139 162 | sstrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ 𝑈 ) |
| 164 | 163 | unssbd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ⊆ 𝑈 ) |
| 165 | ssun2 | ⊢ 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) | |
| 166 | id | ⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → 𝑖 = ( 𝑚 ∪ 𝑛 ) ) | |
| 167 | 165 166 | sseqtrrid | ⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → 𝑛 ⊆ 𝑖 ) |
| 168 | 167 | biantrud | ⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( 𝑛 ∈ ω ↔ ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖 ) ) ) |
| 169 | 168 | bicomd | ⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖 ) ↔ 𝑛 ∈ ω ) ) |
| 170 | fveq2 | ⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) | |
| 171 | 170 | sseq2d | ⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ↔ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 172 | 169 171 | imbi12d | ⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( ( ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ↔ ( 𝑛 ∈ ω → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 173 | eleq1w | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ω ↔ 𝑛 ∈ ω ) ) | |
| 174 | 173 | anbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ↔ ( 𝑖 ∈ ω ∧ 𝑛 ∈ ω ) ) ) |
| 175 | sseq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 ⊆ 𝑖 ↔ 𝑛 ⊆ 𝑖 ) ) | |
| 176 | 174 175 | anbi12d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) ↔ ( ( 𝑖 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑛 ⊆ 𝑖 ) ) ) |
| 177 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 178 | 177 | sseq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) ↔ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ) |
| 179 | 176 178 | imbi12d | ⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ↔ ( ( ( 𝑖 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑛 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 180 | 110 112 114 112 117 129 | findsg | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) |
| 181 | 179 180 | chvarvv | ⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑛 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) |
| 182 | 181 | expl | ⊢ ( 𝑖 ∈ ω → ( ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ) |
| 183 | 172 182 | vtoclga | ⊢ ( ( 𝑚 ∪ 𝑛 ) ∈ ω → ( 𝑛 ∈ ω → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 184 | 107 105 183 | sylc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 185 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) | |
| 186 | 184 185 | sseldd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑏 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 187 | prex | ⊢ { 𝑎 , 𝑏 } ∈ V | |
| 188 | eqid | ⊢ ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) | |
| 189 | preq2 | ⊢ ( 𝑣 = 𝑏 → { 𝑎 , 𝑣 } = { 𝑎 , 𝑏 } ) | |
| 190 | 188 189 | elrnmpt1s | ⊢ ( ( 𝑏 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ { 𝑎 , 𝑏 } ∈ V ) → { 𝑎 , 𝑏 } ∈ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) |
| 191 | 186 187 190 | sylancl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → { 𝑎 , 𝑏 } ∈ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) |
| 192 | 164 191 | sseldd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → { 𝑎 , 𝑏 } ∈ 𝑈 ) |
| 193 | 192 | rexlimdvaa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( ∃ 𝑛 ∈ ω 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) → { 𝑎 , 𝑏 } ∈ 𝑈 ) ) |
| 194 | 102 193 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝑏 ∈ 𝑈 → { 𝑎 , 𝑏 } ∈ 𝑈 ) ) |
| 195 | 194 | ralrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) |
| 196 | 97 98 195 | 3jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) |
| 197 | 196 | rexlimdvaa | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) → ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) ) |
| 198 | 9 197 | biimtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑎 ∈ 𝑈 → ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) ) |
| 199 | 198 | ralrimiv | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑎 ∈ 𝑈 ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) |
| 200 | rdgfun | ⊢ Fun rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) | |
| 201 | omex | ⊢ ω ∈ V | |
| 202 | resfunexg | ⊢ ( ( Fun rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ∧ ω ∈ V ) → ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ∈ V ) | |
| 203 | 200 201 202 | mp2an | ⊢ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ∈ V |
| 204 | 1 203 | eqeltri | ⊢ 𝐹 ∈ V |
| 205 | 204 | rnex | ⊢ ran 𝐹 ∈ V |
| 206 | 205 | uniex | ⊢ ∪ ran 𝐹 ∈ V |
| 207 | 2 206 | eqeltri | ⊢ 𝑈 ∈ V |
| 208 | iswun | ⊢ ( 𝑈 ∈ V → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝑈 ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) ) ) | |
| 209 | 207 208 | ax-mp | ⊢ ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝑈 ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) ) |
| 210 | 64 78 199 209 | syl3anbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝑈 ∈ WUni ) |
| 211 | 74 | unssad | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈 ) |
| 212 | 210 211 | jca | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) ) |