This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. The basis of this version is an arbitrary natural number B instead of zero. (Contributed by NM, 16-Sep-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findsg.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| findsg.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| findsg.3 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | ||
| findsg.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | ||
| findsg.5 | ⊢ ( 𝐵 ∈ ω → 𝜓 ) | ||
| findsg.6 | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | findsg | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findsg.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | findsg.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | findsg.3 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | findsg.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | findsg.5 | ⊢ ( 𝐵 ∈ ω → 𝜓 ) | |
| 6 | findsg.6 | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | sseq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ∅ ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ ∅ ) ) |
| 9 | eqeq2 | ⊢ ( 𝐵 = ∅ → ( 𝑥 = 𝐵 ↔ 𝑥 = ∅ ) ) | |
| 10 | 9 1 | biimtrrdi | ⊢ ( 𝐵 = ∅ → ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( 𝜑 ↔ 𝜓 ) ) |
| 12 | 8 11 | imbi12d | ⊢ ( ( 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 13 | 7 | imbi1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜑 ) ) ) |
| 14 | ss0 | ⊢ ( 𝐵 ⊆ ∅ → 𝐵 = ∅ ) | |
| 15 | 14 | con3i | ⊢ ( ¬ 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅ ) |
| 16 | 15 | pm2.21d | ⊢ ( ¬ 𝐵 = ∅ → ( 𝐵 ⊆ ∅ → ( 𝜑 ↔ 𝜓 ) ) ) |
| 17 | 16 | pm5.74d | ⊢ ( ¬ 𝐵 = ∅ → ( ( 𝐵 ⊆ ∅ → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 18 | 13 17 | sylan9bbr | ⊢ ( ( ¬ 𝐵 = ∅ ∧ 𝑥 = ∅ ) → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 19 | 12 18 | pm2.61ian | ⊢ ( 𝑥 = ∅ → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ ω → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ ω → ( 𝐵 ⊆ ∅ → 𝜓 ) ) ) ) |
| 21 | sseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑦 ) ) | |
| 22 | 21 2 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ ω → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ ω → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) ) ) |
| 24 | sseq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ suc 𝑦 ) ) | |
| 25 | 24 3 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐵 ∈ ω → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ ω → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 27 | sseq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 28 | 27 4 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ⊆ 𝑥 → 𝜑 ) ↔ ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ ω → ( 𝐵 ⊆ 𝑥 → 𝜑 ) ) ↔ ( 𝐵 ∈ ω → ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) ) |
| 30 | 5 | a1d | ⊢ ( 𝐵 ∈ ω → ( 𝐵 ⊆ ∅ → 𝜓 ) ) |
| 31 | vex | ⊢ 𝑦 ∈ V | |
| 32 | 31 | sucex | ⊢ suc 𝑦 ∈ V |
| 33 | 32 | eqvinc | ⊢ ( suc 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) ) |
| 34 | 5 1 | imbitrrid | ⊢ ( 𝑥 = 𝐵 → ( 𝐵 ∈ ω → 𝜑 ) ) |
| 35 | 3 | biimpd | ⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 → 𝜃 ) ) |
| 36 | 34 35 | sylan9r | ⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) → ( 𝐵 ∈ ω → 𝜃 ) ) |
| 37 | 36 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥 = suc 𝑦 ∧ 𝑥 = 𝐵 ) → ( 𝐵 ∈ ω → 𝜃 ) ) |
| 38 | 33 37 | sylbi | ⊢ ( suc 𝑦 = 𝐵 → ( 𝐵 ∈ ω → 𝜃 ) ) |
| 39 | 38 | eqcoms | ⊢ ( 𝐵 = suc 𝑦 → ( 𝐵 ∈ ω → 𝜃 ) ) |
| 40 | 39 | imim2i | ⊢ ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( 𝐵 ⊆ suc 𝑦 → ( 𝐵 ∈ ω → 𝜃 ) ) ) |
| 41 | 40 | a1d | ⊢ ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → ( 𝐵 ∈ ω → 𝜃 ) ) ) ) |
| 42 | 41 | com4r | ⊢ ( 𝐵 ∈ ω → ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 43 | 42 | adantl | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 44 | df-ne | ⊢ ( 𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦 ) | |
| 45 | 44 | anbi2i | ⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ↔ ( 𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦 ) ) |
| 46 | annim | ⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦 ) ↔ ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) ) | |
| 47 | 45 46 | bitri | ⊢ ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ↔ ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) ) |
| 48 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 49 | nnon | ⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) | |
| 50 | onsssuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ 𝐵 ∈ suc 𝑦 ) ) | |
| 51 | onsuc | ⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) | |
| 52 | onelpss | ⊢ ( ( 𝐵 ∈ On ∧ suc 𝑦 ∈ On ) → ( 𝐵 ∈ suc 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) | |
| 53 | 51 52 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ∈ suc 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 54 | 50 53 | bitrd | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ⊆ 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 55 | 48 49 54 | syl2anr | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ⊆ 𝑦 ↔ ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) ) ) |
| 56 | 6 | ex | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ⊆ 𝑦 → ( 𝜒 → 𝜃 ) ) ) |
| 57 | 56 | a1ddd | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ⊆ 𝑦 → ( 𝜒 → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 58 | 57 | a2d | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ 𝑦 → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 59 | 58 | com23 | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐵 ⊆ 𝑦 → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 60 | 55 59 | sylbird | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ⊆ suc 𝑦 ∧ 𝐵 ≠ suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 61 | 47 60 | biimtrrid | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( ¬ ( 𝐵 ⊆ suc 𝑦 → 𝐵 = suc 𝑦 ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 62 | 43 61 | pm2.61d | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) |
| 63 | 62 | ex | ⊢ ( 𝑦 ∈ ω → ( 𝐵 ∈ ω → ( ( 𝐵 ⊆ 𝑦 → 𝜒 ) → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 64 | 63 | a2d | ⊢ ( 𝑦 ∈ ω → ( ( 𝐵 ∈ ω → ( 𝐵 ⊆ 𝑦 → 𝜒 ) ) → ( 𝐵 ∈ ω → ( 𝐵 ⊆ suc 𝑦 → 𝜃 ) ) ) ) |
| 65 | 20 23 26 29 30 64 | finds | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( 𝐵 ⊆ 𝐴 → 𝜏 ) ) ) |
| 66 | 65 | imp31 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → 𝜏 ) |