This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation), using double-substitution instead of a bound variable condition. (Contributed by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frsucmpt2.1 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) | |
| frsucmpt2.2 | ⊢ ( 𝑦 = 𝑥 → 𝐸 = 𝐶 ) | ||
| frsucmpt2.3 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → 𝐸 = 𝐷 ) | ||
| Assertion | frsucmpt2 | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉 ) → ( 𝐹 ‘ suc 𝐵 ) = 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsucmpt2.1 | ⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) | |
| 2 | frsucmpt2.2 | ⊢ ( 𝑦 = 𝑥 → 𝐸 = 𝐶 ) | |
| 3 | frsucmpt2.3 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → 𝐸 = 𝐷 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 5 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
| 6 | nfcv | ⊢ Ⅎ 𝑦 𝐷 | |
| 7 | 2 | cbvmptv | ⊢ ( 𝑦 ∈ V ↦ 𝐸 ) = ( 𝑥 ∈ V ↦ 𝐶 ) |
| 8 | rdgeq1 | ⊢ ( ( 𝑦 ∈ V ↦ 𝐸 ) = ( 𝑥 ∈ V ↦ 𝐶 ) → rec ( ( 𝑦 ∈ V ↦ 𝐸 ) , 𝐴 ) = rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ rec ( ( 𝑦 ∈ V ↦ 𝐸 ) , 𝐴 ) = rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
| 10 | 9 | reseq1i | ⊢ ( rec ( ( 𝑦 ∈ V ↦ 𝐸 ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
| 11 | 1 10 | eqtr4i | ⊢ 𝐹 = ( rec ( ( 𝑦 ∈ V ↦ 𝐸 ) , 𝐴 ) ↾ ω ) |
| 12 | 4 5 6 11 3 | frsucmpt | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉 ) → ( 𝐹 ‘ suc 𝐵 ) = 𝐷 ) |