This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of TakeutiZaring p. 17. (Contributed by NM, 30-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Revised to prove pwexg from vpwex . (Revised by BJ, 10-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vpwex | ⊢ 𝒫 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw | ⊢ 𝒫 𝑥 = { 𝑤 ∣ 𝑤 ⊆ 𝑥 } | |
| 2 | axpow2 | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦 ) | |
| 3 | 2 | sepexi | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) |
| 4 | sseq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥 ) ) | |
| 5 | 4 | eqabbw | ⊢ ( 𝑦 = { 𝑤 ∣ 𝑤 ⊆ 𝑥 } ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 𝑦 = { 𝑤 ∣ 𝑤 ⊆ 𝑥 } ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥 ) ) |
| 7 | 3 6 | mpbir | ⊢ ∃ 𝑦 𝑦 = { 𝑤 ∣ 𝑤 ⊆ 𝑥 } |
| 8 | 7 | issetri | ⊢ { 𝑤 ∣ 𝑤 ⊆ 𝑥 } ∈ V |
| 9 | 1 8 | eqeltri | ⊢ 𝒫 𝑥 ∈ V |