This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The recursive definition generator on upper integers is a function. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| uzrdg.1 | ⊢ 𝐴 ∈ V | ||
| uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | ||
| uzrdg.3 | ⊢ 𝑆 = ran 𝑅 | ||
| Assertion | uzrdgfni | ⊢ 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | uzrdg.1 | ⊢ 𝐴 ∈ V | |
| 4 | uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | |
| 5 | uzrdg.3 | ⊢ 𝑆 = ran 𝑅 | |
| 6 | 5 | eleq2i | ⊢ ( 𝑧 ∈ 𝑆 ↔ 𝑧 ∈ ran 𝑅 ) |
| 7 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω | |
| 8 | 4 | fneq1i | ⊢ ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω ) |
| 9 | 7 8 | mpbir | ⊢ 𝑅 Fn ω |
| 10 | fvelrnb | ⊢ ( 𝑅 Fn ω → ( 𝑧 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( 𝑧 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) |
| 12 | 6 11 | bitri | ⊢ ( 𝑧 ∈ 𝑆 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) |
| 13 | 1 2 3 4 | om2uzrdg | ⊢ ( 𝑤 ∈ ω → ( 𝑅 ‘ 𝑤 ) = 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ) |
| 14 | 1 2 | om2uzuzi | ⊢ ( 𝑤 ∈ ω → ( 𝐺 ‘ 𝑤 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 15 | fvex | ⊢ ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ∈ V | |
| 16 | opelxpi | ⊢ ( ( ( 𝐺 ‘ 𝑤 ) ∈ ( ℤ≥ ‘ 𝐶 ) ∧ ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ∈ V ) → 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) | |
| 17 | 14 15 16 | sylancl | ⊢ ( 𝑤 ∈ ω → 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 18 | 13 17 | eqeltrd | ⊢ ( 𝑤 ∈ ω → ( 𝑅 ‘ 𝑤 ) ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 19 | eleq1 | ⊢ ( ( 𝑅 ‘ 𝑤 ) = 𝑧 → ( ( 𝑅 ‘ 𝑤 ) ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ↔ 𝑧 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) ) | |
| 20 | 18 19 | syl5ibcom | ⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) ) |
| 21 | 20 | rexlimiv | ⊢ ( ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 22 | 12 21 | sylbi | ⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 23 | 22 | ssriv | ⊢ 𝑆 ⊆ ( ( ℤ≥ ‘ 𝐶 ) × V ) |
| 24 | xpss | ⊢ ( ( ℤ≥ ‘ 𝐶 ) × V ) ⊆ ( V × V ) | |
| 25 | 23 24 | sstri | ⊢ 𝑆 ⊆ ( V × V ) |
| 26 | df-rel | ⊢ ( Rel 𝑆 ↔ 𝑆 ⊆ ( V × V ) ) | |
| 27 | 25 26 | mpbir | ⊢ Rel 𝑆 |
| 28 | fvex | ⊢ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ∈ V | |
| 29 | eqeq2 | ⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( 𝑧 = 𝑤 ↔ 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) | |
| 30 | 29 | imbi2d | ⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ↔ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) ) |
| 31 | 30 | albidv | ⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ↔ ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) ) |
| 32 | 28 31 | spcev | ⊢ ( ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) → ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ) |
| 33 | 5 | eleq2i | ⊢ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 ↔ 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ) |
| 34 | fvelrnb | ⊢ ( 𝑅 Fn ω → ( 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) | |
| 35 | 9 34 | ax-mp | ⊢ ( 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) |
| 36 | 33 35 | bitri | ⊢ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) |
| 37 | 13 | eqeq1d | ⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ↔ 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 = 〈 𝑣 , 𝑧 〉 ) ) |
| 38 | fvex | ⊢ ( 𝐺 ‘ 𝑤 ) ∈ V | |
| 39 | 38 15 | opth1 | ⊢ ( 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 = 〈 𝑣 , 𝑧 〉 → ( 𝐺 ‘ 𝑤 ) = 𝑣 ) |
| 40 | 37 39 | biimtrdi | ⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( 𝐺 ‘ 𝑤 ) = 𝑣 ) ) |
| 41 | 1 2 | om2uzf1oi | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) |
| 42 | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ 𝑤 ∈ ω ) → ( ( 𝐺 ‘ 𝑤 ) = 𝑣 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) | |
| 43 | 41 42 | mpan | ⊢ ( 𝑤 ∈ ω → ( ( 𝐺 ‘ 𝑤 ) = 𝑣 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) |
| 44 | 40 43 | syld | ⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) |
| 45 | 2fveq3 | ⊢ ( ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ) | |
| 46 | 44 45 | syl6 | ⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) |
| 47 | 46 | imp | ⊢ ( ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 48 | vex | ⊢ 𝑣 ∈ V | |
| 49 | vex | ⊢ 𝑧 ∈ V | |
| 50 | 48 49 | op2ndd | ⊢ ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) = 𝑧 ) |
| 51 | 50 | adantl | ⊢ ( ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) → ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) = 𝑧 ) |
| 52 | 47 51 | eqtr2d | ⊢ ( ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) |
| 53 | 52 | rexlimiva | ⊢ ( ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) |
| 54 | 36 53 | sylbi | ⊢ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) |
| 55 | 32 54 | mpg | ⊢ ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) |
| 56 | 55 | ax-gen | ⊢ ∀ 𝑣 ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) |
| 57 | dffun5 | ⊢ ( Fun 𝑆 ↔ ( Rel 𝑆 ∧ ∀ 𝑣 ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ) ) | |
| 58 | 27 56 57 | mpbir2an | ⊢ Fun 𝑆 |
| 59 | dmss | ⊢ ( 𝑆 ⊆ ( ( ℤ≥ ‘ 𝐶 ) × V ) → dom 𝑆 ⊆ dom ( ( ℤ≥ ‘ 𝐶 ) × V ) ) | |
| 60 | 23 59 | ax-mp | ⊢ dom 𝑆 ⊆ dom ( ( ℤ≥ ‘ 𝐶 ) × V ) |
| 61 | dmxpss | ⊢ dom ( ( ℤ≥ ‘ 𝐶 ) × V ) ⊆ ( ℤ≥ ‘ 𝐶 ) | |
| 62 | 60 61 | sstri | ⊢ dom 𝑆 ⊆ ( ℤ≥ ‘ 𝐶 ) |
| 63 | 1 2 3 4 | uzrdglem | ⊢ ( 𝑣 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ ran 𝑅 ) |
| 64 | 63 5 | eleqtrrdi | ⊢ ( 𝑣 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ 𝑆 ) |
| 65 | 48 28 | opeldm | ⊢ ( 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ 𝑆 → 𝑣 ∈ dom 𝑆 ) |
| 66 | 64 65 | syl | ⊢ ( 𝑣 ∈ ( ℤ≥ ‘ 𝐶 ) → 𝑣 ∈ dom 𝑆 ) |
| 67 | 66 | ssriv | ⊢ ( ℤ≥ ‘ 𝐶 ) ⊆ dom 𝑆 |
| 68 | 62 67 | eqssi | ⊢ dom 𝑆 = ( ℤ≥ ‘ 𝐶 ) |
| 69 | df-fn | ⊢ ( 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) ↔ ( Fun 𝑆 ∧ dom 𝑆 = ( ℤ≥ ‘ 𝐶 ) ) ) | |
| 70 | 58 68 69 | mpbir2an | ⊢ 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) |