This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either NN or NN0 ) with characteristic function F ( x , y ) and initial value A . Normally F is a function on the partition, and A is a member of the partition. See also comment in om2uz0i . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| uzrdg.1 | ⊢ 𝐴 ∈ V | ||
| uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | ||
| Assertion | om2uzrdg | ⊢ ( 𝐵 ∈ ω → ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | uzrdg.1 | ⊢ 𝐴 ∈ V | |
| 4 | uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | |
| 5 | fveq2 | ⊢ ( 𝑧 = ∅ → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ ∅ ) ) | |
| 6 | fveq2 | ⊢ ( 𝑧 = ∅ → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ∅ ) ) | |
| 7 | 2fveq3 | ⊢ ( 𝑧 = ∅ → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) ) | |
| 8 | 6 7 | opeq12d | ⊢ ( 𝑧 = ∅ → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) |
| 9 | 5 8 | eqeq12d | ⊢ ( 𝑧 = ∅ → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ ∅ ) = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) ) |
| 10 | fveq2 | ⊢ ( 𝑧 = 𝑣 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ 𝑣 ) ) | |
| 11 | fveq2 | ⊢ ( 𝑧 = 𝑣 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑣 ) ) | |
| 12 | 2fveq3 | ⊢ ( 𝑧 = 𝑣 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) | |
| 13 | 11 12 | opeq12d | ⊢ ( 𝑧 = 𝑣 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) |
| 14 | 10 13 | eqeq12d | ⊢ ( 𝑧 = 𝑣 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) |
| 15 | fveq2 | ⊢ ( 𝑧 = suc 𝑣 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ suc 𝑣 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑧 = suc 𝑣 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ suc 𝑣 ) ) | |
| 17 | 2fveq3 | ⊢ ( 𝑧 = suc 𝑣 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ) | |
| 18 | 16 17 | opeq12d | ⊢ ( 𝑧 = suc 𝑣 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) |
| 19 | 15 18 | eqeq12d | ⊢ ( 𝑧 = suc 𝑣 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) |
| 20 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ 𝐵 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) | |
| 22 | 2fveq3 | ⊢ ( 𝑧 = 𝐵 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) ) | |
| 23 | 21 22 | opeq12d | ⊢ ( 𝑧 = 𝐵 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) |
| 24 | 20 23 | eqeq12d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) ) |
| 25 | 4 | fveq1i | ⊢ ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) |
| 26 | opex | ⊢ 〈 𝐶 , 𝐴 〉 ∈ V | |
| 27 | fr0g | ⊢ ( 〈 𝐶 , 𝐴 〉 ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 ) | |
| 28 | 26 27 | ax-mp | ⊢ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
| 29 | 25 28 | eqtri | ⊢ ( 𝑅 ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
| 30 | 1 2 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |
| 31 | 29 | fveq2i | ⊢ ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) = ( 2nd ‘ 〈 𝐶 , 𝐴 〉 ) |
| 32 | 1 | elexi | ⊢ 𝐶 ∈ V |
| 33 | 32 3 | op2nd | ⊢ ( 2nd ‘ 〈 𝐶 , 𝐴 〉 ) = 𝐴 |
| 34 | 31 33 | eqtri | ⊢ ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) = 𝐴 |
| 35 | 30 34 | opeq12i | ⊢ 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 = 〈 𝐶 , 𝐴 〉 |
| 36 | 29 35 | eqtr4i | ⊢ ( 𝑅 ‘ ∅ ) = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 |
| 37 | frsuc | ⊢ ( 𝑣 ∈ ω → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) ) | |
| 38 | 4 | fveq1i | ⊢ ( 𝑅 ‘ suc 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc 𝑣 ) |
| 39 | 4 | fveq1i | ⊢ ( 𝑅 ‘ 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) |
| 40 | 39 | fveq2i | ⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) |
| 41 | 37 38 40 | 3eqtr4g | ⊢ ( 𝑣 ∈ ω → ( 𝑅 ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
| 42 | fveq2 | ⊢ ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) | |
| 43 | df-ov | ⊢ ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) | |
| 44 | fvex | ⊢ ( 𝐺 ‘ 𝑣 ) ∈ V | |
| 45 | fvex | ⊢ ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ∈ V | |
| 46 | oveq1 | ⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → ( 𝑤 + 1 ) = ( ( 𝐺 ‘ 𝑣 ) + 1 ) ) | |
| 47 | oveq1 | ⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → ( 𝑤 𝐹 𝑧 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) ) | |
| 48 | 46 47 | opeq12d | ⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑧 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) 〉 ) |
| 49 | oveq2 | ⊢ ( 𝑧 = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) → ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ) | |
| 50 | 49 | opeq2d | ⊢ ( 𝑧 = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) → 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 51 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 + 1 ) = ( 𝑤 + 1 ) ) | |
| 52 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐹 𝑦 ) = ( 𝑤 𝐹 𝑦 ) ) | |
| 53 | 51 52 | opeq12d | ⊢ ( 𝑥 = 𝑤 → 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 = 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑦 ) 〉 ) |
| 54 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑤 𝐹 𝑦 ) = ( 𝑤 𝐹 𝑧 ) ) | |
| 55 | 54 | opeq2d | ⊢ ( 𝑦 = 𝑧 → 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑦 ) 〉 = 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑧 ) 〉 ) |
| 56 | 53 55 | cbvmpov | ⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) = ( 𝑤 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑧 ) 〉 ) |
| 57 | opex | ⊢ 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ∈ V | |
| 58 | 48 50 56 57 | ovmpo | ⊢ ( ( ( 𝐺 ‘ 𝑣 ) ∈ V ∧ ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ∈ V ) → ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 59 | 44 45 58 | mp2an | ⊢ ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 |
| 60 | 43 59 | eqtr3i | ⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 |
| 61 | 42 60 | eqtrdi | ⊢ ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 62 | 41 61 | sylan9eq | ⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 63 | 1 2 | om2uzsuci | ⊢ ( 𝑣 ∈ ω → ( 𝐺 ‘ suc 𝑣 ) = ( ( 𝐺 ‘ 𝑣 ) + 1 ) ) |
| 64 | 63 | adantr | ⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 𝐺 ‘ suc 𝑣 ) = ( ( 𝐺 ‘ 𝑣 ) + 1 ) ) |
| 65 | 62 | fveq2d | ⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) = ( 2nd ‘ 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) ) |
| 66 | ovex | ⊢ ( ( 𝐺 ‘ 𝑣 ) + 1 ) ∈ V | |
| 67 | ovex | ⊢ ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ∈ V | |
| 68 | 66 67 | op2nd | ⊢ ( 2nd ‘ 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
| 69 | 65 68 | eqtrdi | ⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ) |
| 70 | 64 69 | opeq12d | ⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
| 71 | 62 70 | eqtr4d | ⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) |
| 72 | 71 | ex | ⊢ ( 𝑣 ∈ ω → ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) |
| 73 | 9 14 19 24 36 72 | finds | ⊢ ( 𝐵 ∈ ω → ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) |