This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The recursive definition generator on upper integers is a function. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| uzrdg.1 | |- A e. _V |
||
| uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
||
| uzrdg.3 | |- S = ran R |
||
| Assertion | uzrdgfni | |- S Fn ( ZZ>= ` C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | uzrdg.1 | |- A e. _V |
|
| 4 | uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
|
| 5 | uzrdg.3 | |- S = ran R |
|
| 6 | 5 | eleq2i | |- ( z e. S <-> z e. ran R ) |
| 7 | frfnom | |- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
|
| 8 | 4 | fneq1i | |- ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) |
| 9 | 7 8 | mpbir | |- R Fn _om |
| 10 | fvelrnb | |- ( R Fn _om -> ( z e. ran R <-> E. w e. _om ( R ` w ) = z ) ) |
|
| 11 | 9 10 | ax-mp | |- ( z e. ran R <-> E. w e. _om ( R ` w ) = z ) |
| 12 | 6 11 | bitri | |- ( z e. S <-> E. w e. _om ( R ` w ) = z ) |
| 13 | 1 2 3 4 | om2uzrdg | |- ( w e. _om -> ( R ` w ) = <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. ) |
| 14 | 1 2 | om2uzuzi | |- ( w e. _om -> ( G ` w ) e. ( ZZ>= ` C ) ) |
| 15 | fvex | |- ( 2nd ` ( R ` w ) ) e. _V |
|
| 16 | opelxpi | |- ( ( ( G ` w ) e. ( ZZ>= ` C ) /\ ( 2nd ` ( R ` w ) ) e. _V ) -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. e. ( ( ZZ>= ` C ) X. _V ) ) |
|
| 17 | 14 15 16 | sylancl | |- ( w e. _om -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. e. ( ( ZZ>= ` C ) X. _V ) ) |
| 18 | 13 17 | eqeltrd | |- ( w e. _om -> ( R ` w ) e. ( ( ZZ>= ` C ) X. _V ) ) |
| 19 | eleq1 | |- ( ( R ` w ) = z -> ( ( R ` w ) e. ( ( ZZ>= ` C ) X. _V ) <-> z e. ( ( ZZ>= ` C ) X. _V ) ) ) |
|
| 20 | 18 19 | syl5ibcom | |- ( w e. _om -> ( ( R ` w ) = z -> z e. ( ( ZZ>= ` C ) X. _V ) ) ) |
| 21 | 20 | rexlimiv | |- ( E. w e. _om ( R ` w ) = z -> z e. ( ( ZZ>= ` C ) X. _V ) ) |
| 22 | 12 21 | sylbi | |- ( z e. S -> z e. ( ( ZZ>= ` C ) X. _V ) ) |
| 23 | 22 | ssriv | |- S C_ ( ( ZZ>= ` C ) X. _V ) |
| 24 | xpss | |- ( ( ZZ>= ` C ) X. _V ) C_ ( _V X. _V ) |
|
| 25 | 23 24 | sstri | |- S C_ ( _V X. _V ) |
| 26 | df-rel | |- ( Rel S <-> S C_ ( _V X. _V ) ) |
|
| 27 | 25 26 | mpbir | |- Rel S |
| 28 | fvex | |- ( 2nd ` ( R ` ( `' G ` v ) ) ) e. _V |
|
| 29 | eqeq2 | |- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( z = w <-> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) |
|
| 30 | 29 | imbi2d | |- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( ( <. v , z >. e. S -> z = w ) <-> ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) ) |
| 31 | 30 | albidv | |- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( A. z ( <. v , z >. e. S -> z = w ) <-> A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) ) |
| 32 | 28 31 | spcev | |- ( A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) -> E. w A. z ( <. v , z >. e. S -> z = w ) ) |
| 33 | 5 | eleq2i | |- ( <. v , z >. e. S <-> <. v , z >. e. ran R ) |
| 34 | fvelrnb | |- ( R Fn _om -> ( <. v , z >. e. ran R <-> E. w e. _om ( R ` w ) = <. v , z >. ) ) |
|
| 35 | 9 34 | ax-mp | |- ( <. v , z >. e. ran R <-> E. w e. _om ( R ` w ) = <. v , z >. ) |
| 36 | 33 35 | bitri | |- ( <. v , z >. e. S <-> E. w e. _om ( R ` w ) = <. v , z >. ) |
| 37 | 13 | eqeq1d | |- ( w e. _om -> ( ( R ` w ) = <. v , z >. <-> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. ) ) |
| 38 | fvex | |- ( G ` w ) e. _V |
|
| 39 | 38 15 | opth1 | |- ( <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. -> ( G ` w ) = v ) |
| 40 | 37 39 | biimtrdi | |- ( w e. _om -> ( ( R ` w ) = <. v , z >. -> ( G ` w ) = v ) ) |
| 41 | 1 2 | om2uzf1oi | |- G : _om -1-1-onto-> ( ZZ>= ` C ) |
| 42 | f1ocnvfv | |- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ w e. _om ) -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) |
|
| 43 | 41 42 | mpan | |- ( w e. _om -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) |
| 44 | 40 43 | syld | |- ( w e. _om -> ( ( R ` w ) = <. v , z >. -> ( `' G ` v ) = w ) ) |
| 45 | 2fveq3 | |- ( ( `' G ` v ) = w -> ( 2nd ` ( R ` ( `' G ` v ) ) ) = ( 2nd ` ( R ` w ) ) ) |
|
| 46 | 44 45 | syl6 | |- ( w e. _om -> ( ( R ` w ) = <. v , z >. -> ( 2nd ` ( R ` ( `' G ` v ) ) ) = ( 2nd ` ( R ` w ) ) ) ) |
| 47 | 46 | imp | |- ( ( w e. _om /\ ( R ` w ) = <. v , z >. ) -> ( 2nd ` ( R ` ( `' G ` v ) ) ) = ( 2nd ` ( R ` w ) ) ) |
| 48 | vex | |- v e. _V |
|
| 49 | vex | |- z e. _V |
|
| 50 | 48 49 | op2ndd | |- ( ( R ` w ) = <. v , z >. -> ( 2nd ` ( R ` w ) ) = z ) |
| 51 | 50 | adantl | |- ( ( w e. _om /\ ( R ` w ) = <. v , z >. ) -> ( 2nd ` ( R ` w ) ) = z ) |
| 52 | 47 51 | eqtr2d | |- ( ( w e. _om /\ ( R ` w ) = <. v , z >. ) -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) |
| 53 | 52 | rexlimiva | |- ( E. w e. _om ( R ` w ) = <. v , z >. -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) |
| 54 | 36 53 | sylbi | |- ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) |
| 55 | 32 54 | mpg | |- E. w A. z ( <. v , z >. e. S -> z = w ) |
| 56 | 55 | ax-gen | |- A. v E. w A. z ( <. v , z >. e. S -> z = w ) |
| 57 | dffun5 | |- ( Fun S <-> ( Rel S /\ A. v E. w A. z ( <. v , z >. e. S -> z = w ) ) ) |
|
| 58 | 27 56 57 | mpbir2an | |- Fun S |
| 59 | dmss | |- ( S C_ ( ( ZZ>= ` C ) X. _V ) -> dom S C_ dom ( ( ZZ>= ` C ) X. _V ) ) |
|
| 60 | 23 59 | ax-mp | |- dom S C_ dom ( ( ZZ>= ` C ) X. _V ) |
| 61 | dmxpss | |- dom ( ( ZZ>= ` C ) X. _V ) C_ ( ZZ>= ` C ) |
|
| 62 | 60 61 | sstri | |- dom S C_ ( ZZ>= ` C ) |
| 63 | 1 2 3 4 | uzrdglem | |- ( v e. ( ZZ>= ` C ) -> <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. ran R ) |
| 64 | 63 5 | eleqtrrdi | |- ( v e. ( ZZ>= ` C ) -> <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. S ) |
| 65 | 48 28 | opeldm | |- ( <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. S -> v e. dom S ) |
| 66 | 64 65 | syl | |- ( v e. ( ZZ>= ` C ) -> v e. dom S ) |
| 67 | 66 | ssriv | |- ( ZZ>= ` C ) C_ dom S |
| 68 | 62 67 | eqssi | |- dom S = ( ZZ>= ` C ) |
| 69 | df-fn | |- ( S Fn ( ZZ>= ` C ) <-> ( Fun S /\ dom S = ( ZZ>= ` C ) ) ) |
|
| 70 | 58 68 69 | mpbir2an | |- S Fn ( ZZ>= ` C ) |