This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value G (see om2uz0i ) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| Assertion | om2uzuzi | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | fveq2 | ⊢ ( 𝑦 = ∅ → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ∅ ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑦 = ∅ → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ ∅ ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑦 = suc 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ suc 𝑧 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑦 = suc 𝑧 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 11 | 1 2 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |
| 12 | uzid | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ( ℤ≥ ‘ 𝐶 ) ) | |
| 13 | 1 12 | ax-mp | ⊢ 𝐶 ∈ ( ℤ≥ ‘ 𝐶 ) |
| 14 | 11 13 | eqeltri | ⊢ ( 𝐺 ‘ ∅ ) ∈ ( ℤ≥ ‘ 𝐶 ) |
| 15 | peano2uz | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) | |
| 16 | 1 2 | om2uzsuci | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ suc 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) + 1 ) ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ↔ ( ( 𝐺 ‘ 𝑧 ) + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 18 | 15 17 | imbitrrid | ⊢ ( 𝑧 ∈ ω → ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ suc 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) ) |
| 19 | 4 6 8 10 14 18 | finds | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |