This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: G (see om2uz0i ) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| Assertion | om2uzf1oi | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) Fn ω | |
| 4 | 2 | fneq1i | ⊢ ( 𝐺 Fn ω ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) Fn ω ) |
| 5 | 3 4 | mpbir | ⊢ 𝐺 Fn ω |
| 6 | 1 2 | om2uzrani | ⊢ ran 𝐺 = ( ℤ≥ ‘ 𝐶 ) |
| 7 | 6 | eqimssi | ⊢ ran 𝐺 ⊆ ( ℤ≥ ‘ 𝐶 ) |
| 8 | df-f | ⊢ ( 𝐺 : ω ⟶ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 Fn ω ∧ ran 𝐺 ⊆ ( ℤ≥ ‘ 𝐶 ) ) ) | |
| 9 | 5 7 8 | mpbir2an | ⊢ 𝐺 : ω ⟶ ( ℤ≥ ‘ 𝐶 ) |
| 10 | 1 2 | om2uzuzi | ⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 11 | eluzelz | ⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ 𝑦 ) ∈ ℤ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ℤ ) |
| 13 | 12 | zred | ⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 14 | 1 2 | om2uzuzi | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 15 | eluzelz | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℤ ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ℤ ) |
| 17 | 16 | zred | ⊢ ( 𝑧 ∈ ω → ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) |
| 18 | lttri3 | ⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( ¬ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 19 | 13 17 18 | syl2an | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( ¬ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 20 | ioran | ⊢ ( ¬ ( ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ↔ ( ¬ ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ∧ ¬ ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ) | |
| 21 | 19 20 | bitr4di | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ¬ ( ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 22 | nnord | ⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) | |
| 23 | nnord | ⊢ ( 𝑧 ∈ ω → Ord 𝑧 ) | |
| 24 | ordtri3 | ⊢ ( ( Ord 𝑦 ∧ Ord 𝑧 ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) | |
| 25 | 22 23 24 | syl2an | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 26 | 25 | con2bid | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ¬ 𝑦 = 𝑧 ) ) |
| 27 | 1 2 | om2uzlti | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 ∈ 𝑧 → ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ) ) |
| 28 | 1 2 | om2uzlti | ⊢ ( ( 𝑧 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑧 ∈ 𝑦 → ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 29 | 28 | ancoms | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑧 ∈ 𝑦 → ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 30 | 27 29 | orim12d | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 31 | 26 30 | sylbird | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ¬ 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 32 | 31 | con1d | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ¬ ( ( 𝐺 ‘ 𝑦 ) < ( 𝐺 ‘ 𝑧 ) ∨ ( 𝐺 ‘ 𝑧 ) < ( 𝐺 ‘ 𝑦 ) ) → 𝑦 = 𝑧 ) ) |
| 33 | 21 32 | sylbid | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 34 | 33 | rgen2 | ⊢ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) |
| 35 | dff13 | ⊢ ( 𝐺 : ω –1-1→ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 : ω ⟶ ( ℤ≥ ‘ 𝐶 ) ∧ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 36 | 9 34 35 | mpbir2an | ⊢ 𝐺 : ω –1-1→ ( ℤ≥ ‘ 𝐶 ) |
| 37 | dff1o5 | ⊢ ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ↔ ( 𝐺 : ω –1-1→ ( ℤ≥ ‘ 𝐶 ) ∧ ran 𝐺 = ( ℤ≥ ‘ 𝐶 ) ) ) | |
| 38 | 36 6 37 | mpbir2an | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) |