This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| uzrdg.1 | ⊢ 𝐴 ∈ V | ||
| uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | ||
| Assertion | uzrdglem | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ ran 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | uzrdg.1 | ⊢ 𝐴 ∈ V | |
| 4 | uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | |
| 5 | 1 2 | om2uzf1oi | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) |
| 6 | f1ocnvdm | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
| 8 | 1 2 3 4 | om2uzrdg | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
| 9 | 7 8 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
| 10 | f1ocnvfv2 | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) | |
| 11 | 5 10 | mpan | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) |
| 12 | 11 | opeq1d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 = 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
| 13 | 9 12 | eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
| 14 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω | |
| 15 | 4 | fneq1i | ⊢ ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω ) |
| 16 | 14 15 | mpbir | ⊢ 𝑅 Fn ω |
| 17 | fnfvelrn | ⊢ ( ( 𝑅 Fn ω ∧ ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ ran 𝑅 ) | |
| 18 | 16 7 17 | sylancr | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ ran 𝑅 ) |
| 19 | 13 18 | eqeltrrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ ran 𝑅 ) |