This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| uzrdg.1 | ⊢ 𝐴 ∈ V | ||
| uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | ||
| uzrdg.3 | ⊢ 𝑆 = ran 𝑅 | ||
| Assertion | uzrdg0i | ⊢ ( 𝑆 ‘ 𝐶 ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | uzrdg.1 | ⊢ 𝐴 ∈ V | |
| 4 | uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | |
| 5 | uzrdg.3 | ⊢ 𝑆 = ran 𝑅 | |
| 6 | 1 2 3 4 5 | uzrdgfni | ⊢ 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) |
| 7 | fnfun | ⊢ ( 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) → Fun 𝑆 ) | |
| 8 | 6 7 | ax-mp | ⊢ Fun 𝑆 |
| 9 | 4 | fveq1i | ⊢ ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) |
| 10 | opex | ⊢ 〈 𝐶 , 𝐴 〉 ∈ V | |
| 11 | fr0g | ⊢ ( 〈 𝐶 , 𝐴 〉 ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 ) | |
| 12 | 10 11 | ax-mp | ⊢ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
| 13 | 9 12 | eqtri | ⊢ ( 𝑅 ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
| 14 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω | |
| 15 | 4 | fneq1i | ⊢ ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω ) |
| 16 | 14 15 | mpbir | ⊢ 𝑅 Fn ω |
| 17 | peano1 | ⊢ ∅ ∈ ω | |
| 18 | fnfvelrn | ⊢ ( ( 𝑅 Fn ω ∧ ∅ ∈ ω ) → ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 ) | |
| 19 | 16 17 18 | mp2an | ⊢ ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 |
| 20 | 13 19 | eqeltrri | ⊢ 〈 𝐶 , 𝐴 〉 ∈ ran 𝑅 |
| 21 | 20 5 | eleqtrri | ⊢ 〈 𝐶 , 𝐴 〉 ∈ 𝑆 |
| 22 | funopfv | ⊢ ( Fun 𝑆 → ( 〈 𝐶 , 𝐴 〉 ∈ 𝑆 → ( 𝑆 ‘ 𝐶 ) = 𝐴 ) ) | |
| 23 | 8 21 22 | mp2 | ⊢ ( 𝑆 ‘ 𝐶 ) = 𝐴 |