This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a given uniform structure U on a set X , there is a unique topology j such that the set ran ( v e. U |-> ( v " { p } ) ) is the filter of the neighborhoods of p for that topology. Proposition 1 of BourbakiTop1 p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| Assertion | ustuqtop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∀ 𝑝 ∈ 𝑋 ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝑝 = 𝑟 → ( 𝑁 ‘ 𝑝 ) = ( 𝑁 ‘ 𝑟 ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑝 = 𝑟 → ( 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ↔ 𝑐 ∈ ( 𝑁 ‘ 𝑟 ) ) ) |
| 4 | 3 | cbvralvw | ⊢ ( ∀ 𝑝 ∈ 𝑐 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∀ 𝑟 ∈ 𝑐 𝑐 ∈ ( 𝑁 ‘ 𝑟 ) ) |
| 5 | eleq1w | ⊢ ( 𝑐 = 𝑎 → ( 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ↔ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) | |
| 6 | 5 | raleqbi1dv | ⊢ ( 𝑐 = 𝑎 → ( ∀ 𝑝 ∈ 𝑐 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 7 | 4 6 | bitr3id | ⊢ ( 𝑐 = 𝑎 → ( ∀ 𝑟 ∈ 𝑐 𝑐 ∈ ( 𝑁 ‘ 𝑟 ) ↔ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 8 | 7 | cbvrabv | ⊢ { 𝑐 ∈ 𝒫 𝑋 ∣ ∀ 𝑟 ∈ 𝑐 𝑐 ∈ ( 𝑁 ‘ 𝑟 ) } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } |
| 9 | 1 | ustuqtop0 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) |
| 10 | 1 | ustuqtop1 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 11 | 1 | ustuqtop2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |
| 12 | 1 | ustuqtop3 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |
| 13 | 1 | ustuqtop4 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑥 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑥 ) ) |
| 14 | 1 | ustuqtop5 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 15 | 8 9 10 11 12 13 14 | neiptopreu | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 16 | 9 | feqmptd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( 𝑁 ‘ 𝑝 ) ) ) |
| 17 | 16 | eqeq1d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ ( 𝑝 ∈ 𝑋 ↦ ( 𝑁 ‘ 𝑝 ) ) = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) ) |
| 18 | fvex | ⊢ ( 𝑁 ‘ 𝑝 ) ∈ V | |
| 19 | 18 | rgenw | ⊢ ∀ 𝑝 ∈ 𝑋 ( 𝑁 ‘ 𝑝 ) ∈ V |
| 20 | mpteqb | ⊢ ( ∀ 𝑝 ∈ 𝑋 ( 𝑁 ‘ 𝑝 ) ∈ V → ( ( 𝑝 ∈ 𝑋 ↦ ( 𝑁 ‘ 𝑝 ) ) = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ ∀ 𝑝 ∈ 𝑋 ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( ( 𝑝 ∈ 𝑋 ↦ ( 𝑁 ‘ 𝑝 ) ) = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ ∀ 𝑝 ∈ 𝑋 ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |
| 22 | 17 21 | bitrdi | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ ∀ 𝑝 ∈ 𝑋 ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 23 | 22 | reubidv | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ↔ ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∀ 𝑝 ∈ 𝑋 ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) ) |
| 24 | 15 23 | mpbid | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∃! 𝑗 ∈ ( TopOn ‘ 𝑋 ) ∀ 𝑝 ∈ 𝑋 ( 𝑁 ‘ 𝑝 ) = ( ( nei ‘ 𝑗 ) ‘ { 𝑝 } ) ) |