This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhoods of a point P for the topology induced by an uniform space U . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | utoptop.1 | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| utopsnneip.1 | ⊢ 𝐾 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } | ||
| utopsnneip.2 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | ||
| Assertion | utopsnneiplem | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| 2 | utopsnneip.1 | ⊢ 𝐾 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } | |
| 3 | utopsnneip.2 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 4 | utopval | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 } ) | |
| 5 | 1 4 | eqtrid | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 } ) |
| 6 | simpll | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 7 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑎 ∈ 𝒫 𝑋 ) | |
| 8 | 7 | elpwid | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑎 ⊆ 𝑋 ) |
| 9 | 8 | sselda | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑝 ∈ 𝑋 ) |
| 10 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝑋 ) | |
| 11 | mptexg | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) | |
| 12 | rnexg | ⊢ ( ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) |
| 15 | 3 | fvmpt2 | ⊢ ( ( 𝑝 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) → ( 𝑁 ‘ 𝑝 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 16 | 10 14 15 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑝 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ 𝑎 ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) ) |
| 18 | eqid | ⊢ ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) | |
| 19 | 18 | elrnmpt | ⊢ ( 𝑎 ∈ V → ( 𝑎 ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ) |
| 20 | 19 | elv | ⊢ ( 𝑎 ∈ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 21 | 17 20 | bitrdi | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ) |
| 22 | 6 9 21 | syl2anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ) |
| 23 | nfv | ⊢ Ⅎ 𝑣 ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) | |
| 24 | nfre1 | ⊢ Ⅎ 𝑣 ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) | |
| 25 | 23 24 | nfan | ⊢ Ⅎ 𝑣 ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 26 | simplr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → 𝑣 ∈ 𝑈 ) | |
| 27 | eqimss2 | ⊢ ( 𝑎 = ( 𝑣 “ { 𝑝 } ) → ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 ) | |
| 28 | 27 | adantl | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 29 | imaeq1 | ⊢ ( 𝑤 = 𝑣 → ( 𝑤 “ { 𝑝 } ) = ( 𝑣 “ { 𝑝 } ) ) | |
| 30 | 29 | sseq1d | ⊢ ( 𝑤 = 𝑣 → ( ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ↔ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 31 | 30 | rspcev | ⊢ ( ( 𝑣 ∈ 𝑈 ∧ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑎 ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 32 | 26 28 31 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 33 | simpr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) | |
| 34 | 25 32 33 | r19.29af | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) |
| 35 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 36 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑝 ∈ 𝑋 ) |
| 37 | 35 36 | jca | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ) |
| 38 | simpr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) | |
| 39 | 8 | ad3antrrr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑎 ⊆ 𝑋 ) |
| 40 | simplr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑤 ∈ 𝑈 ) | |
| 41 | eqid | ⊢ ( 𝑤 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) | |
| 42 | imaeq1 | ⊢ ( 𝑢 = 𝑤 → ( 𝑢 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) | |
| 43 | 42 | rspceeqv | ⊢ ( ( 𝑤 ∈ 𝑈 ∧ ( 𝑤 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) |
| 44 | 41 43 | mpan2 | ⊢ ( 𝑤 ∈ 𝑈 → ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) |
| 45 | 44 | adantl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) |
| 46 | vex | ⊢ 𝑤 ∈ V | |
| 47 | 46 | imaex | ⊢ ( 𝑤 “ { 𝑝 } ) ∈ V |
| 48 | 3 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ∈ V ) → ( ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) ) |
| 49 | 47 48 | mpan2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ( ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) ) |
| 51 | 45 50 | mpbird | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 52 | 35 36 40 51 | syl21anc | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 53 | sseq1 | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( 𝑏 ⊆ 𝑎 ↔ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) ) | |
| 54 | 53 | 3anbi2d | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ↔ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ) ) |
| 55 | eleq1 | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) ) | |
| 56 | 54 55 | anbi12d | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 57 | 56 | imbi1d | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 58 | 3 | ustuqtop1 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 59 | 47 57 58 | vtocl | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ∧ 𝑎 ⊆ 𝑋 ) ∧ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 60 | 37 38 39 52 59 | syl31anc | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 61 | 37 21 | syl | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) ) |
| 62 | 60 61 | mpbid | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ 𝑤 ∈ 𝑈 ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 63 | 62 | r19.29an | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) → ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ) |
| 64 | 34 63 | impbida | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → ( ∃ 𝑣 ∈ 𝑈 𝑎 = ( 𝑣 “ { 𝑝 } ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 65 | 22 64 | bitrd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 66 | 65 | ralbidva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∀ 𝑝 ∈ 𝑎 ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 ) ) |
| 67 | 66 | rabbidva | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 ∃ 𝑤 ∈ 𝑈 ( 𝑤 “ { 𝑝 } ) ⊆ 𝑎 } ) |
| 68 | 5 67 | eqtr4d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } ) |
| 69 | 68 2 | eqtr4di | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = 𝐾 ) |
| 70 | 69 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( nei ‘ 𝐽 ) = ( nei ‘ 𝐾 ) ) |
| 71 | 70 | fveq1d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ) |
| 73 | 3 | ustuqtop0 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) |
| 74 | 3 | ustuqtop1 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 75 | 3 | ustuqtop2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |
| 76 | 3 | ustuqtop3 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |
| 77 | 3 | ustuqtop4 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 78 | 3 | ustuqtop5 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 79 | 2 73 74 75 76 77 78 | neiptopnei | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐾 ) ‘ { 𝑝 } ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ( ( nei ‘ 𝐾 ) ‘ { 𝑝 } ) ) ) |
| 81 | simpr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) | |
| 82 | 81 | sneqd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑝 = 𝑃 ) → { 𝑝 } = { 𝑃 } ) |
| 83 | 82 | fveq2d | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑝 = 𝑃 ) → ( ( nei ‘ 𝐾 ) ‘ { 𝑝 } ) = ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ) |
| 84 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) | |
| 85 | fvexd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ∈ V ) | |
| 86 | 80 83 84 85 | fvmptd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑃 ) = ( ( nei ‘ 𝐾 ) ‘ { 𝑃 } ) ) |
| 87 | mptexg | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) | |
| 88 | rnexg | ⊢ ( ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) | |
| 89 | 87 88 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 90 | 89 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 91 | nfv | ⊢ Ⅎ 𝑣 𝑃 ∈ 𝑋 | |
| 92 | nfmpt1 | ⊢ Ⅎ 𝑣 ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) | |
| 93 | 92 | nfrn | ⊢ Ⅎ 𝑣 ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) |
| 94 | 93 | nfel1 | ⊢ Ⅎ 𝑣 ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V |
| 95 | 91 94 | nfan | ⊢ Ⅎ 𝑣 ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) |
| 96 | nfv | ⊢ Ⅎ 𝑣 𝑝 = 𝑃 | |
| 97 | 95 96 | nfan | ⊢ Ⅎ 𝑣 ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) ∧ 𝑝 = 𝑃 ) |
| 98 | simpr2 | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → 𝑝 = 𝑃 ) | |
| 99 | 98 | sneqd | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → { 𝑝 } = { 𝑃 } ) |
| 100 | 99 | imaeq2d | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ∧ 𝑝 = 𝑃 ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑣 “ { 𝑝 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 101 | 100 | 3anassrs | ⊢ ( ( ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) ∧ 𝑝 = 𝑃 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑝 } ) = ( 𝑣 “ { 𝑃 } ) ) |
| 102 | 97 101 | mpteq2da | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) ∧ 𝑝 = 𝑃 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 103 | 102 | rneqd | ⊢ ( ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) ∧ 𝑝 = 𝑃 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 104 | simpl | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) → 𝑃 ∈ 𝑋 ) | |
| 105 | simpr | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) | |
| 106 | 3 103 104 105 | fvmptd2 | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ∈ V ) → ( 𝑁 ‘ 𝑃 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 107 | 84 90 106 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑃 ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |
| 108 | 72 86 107 | 3eqtr2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) = ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑃 } ) ) ) |