This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| Assertion | ustuqtop2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 2 | simp-6l | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ) | |
| 3 | simp-7l | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 4 | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → 𝑤 ∈ 𝑈 ) | |
| 5 | simplr | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → 𝑢 ∈ 𝑈 ) | |
| 6 | ustincl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑤 ∩ 𝑢 ) ∈ 𝑈 ) | |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → ( 𝑤 ∩ 𝑢 ) ∈ 𝑈 ) |
| 8 | ineq12 | ⊢ ( ( 𝑎 = ( 𝑤 “ { 𝑝 } ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → ( 𝑎 ∩ 𝑏 ) = ( ( 𝑤 “ { 𝑝 } ) ∩ ( 𝑢 “ { 𝑝 } ) ) ) | |
| 9 | inimasn | ⊢ ( 𝑝 ∈ V → ( ( 𝑤 ∩ 𝑢 ) “ { 𝑝 } ) = ( ( 𝑤 “ { 𝑝 } ) ∩ ( 𝑢 “ { 𝑝 } ) ) ) | |
| 10 | 9 | elv | ⊢ ( ( 𝑤 ∩ 𝑢 ) “ { 𝑝 } ) = ( ( 𝑤 “ { 𝑝 } ) ∩ ( 𝑢 “ { 𝑝 } ) ) |
| 11 | 8 10 | eqtr4di | ⊢ ( ( 𝑎 = ( 𝑤 “ { 𝑝 } ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → ( 𝑎 ∩ 𝑏 ) = ( ( 𝑤 ∩ 𝑢 ) “ { 𝑝 } ) ) |
| 12 | 11 | ad4ant24 | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → ( 𝑎 ∩ 𝑏 ) = ( ( 𝑤 ∩ 𝑢 ) “ { 𝑝 } ) ) |
| 13 | imaeq1 | ⊢ ( 𝑥 = ( 𝑤 ∩ 𝑢 ) → ( 𝑥 “ { 𝑝 } ) = ( ( 𝑤 ∩ 𝑢 ) “ { 𝑝 } ) ) | |
| 14 | 13 | rspceeqv | ⊢ ( ( ( 𝑤 ∩ 𝑢 ) ∈ 𝑈 ∧ ( 𝑎 ∩ 𝑏 ) = ( ( 𝑤 ∩ 𝑢 ) “ { 𝑝 } ) ) → ∃ 𝑥 ∈ 𝑈 ( 𝑎 ∩ 𝑏 ) = ( 𝑥 “ { 𝑝 } ) ) |
| 15 | 7 12 14 | syl2anc | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → ∃ 𝑥 ∈ 𝑈 ( 𝑎 ∩ 𝑏 ) = ( 𝑥 “ { 𝑝 } ) ) |
| 16 | vex | ⊢ 𝑎 ∈ V | |
| 17 | 16 | inex1 | ⊢ ( 𝑎 ∩ 𝑏 ) ∈ V |
| 18 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑎 ∩ 𝑏 ) ∈ V ) → ( ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑥 ∈ 𝑈 ( 𝑎 ∩ 𝑏 ) = ( 𝑥 “ { 𝑝 } ) ) ) |
| 19 | 17 18 | mpan2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑥 ∈ 𝑈 ( 𝑎 ∩ 𝑏 ) = ( 𝑥 “ { 𝑝 } ) ) ) |
| 20 | 19 | biimpar | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ∃ 𝑥 ∈ 𝑈 ( 𝑎 ∩ 𝑏 ) = ( 𝑥 “ { 𝑝 } ) ) → ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 21 | 2 15 20 | syl2anc | ⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑏 = ( 𝑢 “ { 𝑝 } ) ) → ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 22 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ∈ V ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
| 23 | 22 | elvd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
| 24 | 23 | biimpa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) |
| 25 | 24 | ad5ant13 | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) |
| 26 | 21 25 | r19.29a | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 27 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ V ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 28 | 27 | elvd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 29 | 28 | biimpa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
| 31 | 26 30 | r19.29a | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) → ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 32 | 31 | ralrimiva | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∀ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ∀ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 34 | fvex | ⊢ ( 𝑁 ‘ 𝑝 ) ∈ V | |
| 35 | inficl | ⊢ ( ( 𝑁 ‘ 𝑝 ) ∈ V → ( ∀ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) = ( 𝑁 ‘ 𝑝 ) ) ) | |
| 36 | 34 35 | ax-mp | ⊢ ( ∀ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ( 𝑎 ∩ 𝑏 ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) = ( 𝑁 ‘ 𝑝 ) ) |
| 37 | 33 36 | sylib | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) = ( 𝑁 ‘ 𝑝 ) ) |
| 38 | eqimss | ⊢ ( ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) = ( 𝑁 ‘ 𝑝 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |