This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop , similar to ssnei2 . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| Assertion | ustuqtop1 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 2 | simpl1l | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 3 | 2 | 3anassrs | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 4 | simplr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑤 ∈ 𝑈 ) | |
| 5 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → 𝑤 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑤 ⊆ ( 𝑋 × 𝑋 ) ) |
| 7 | simpl1r | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) → 𝑝 ∈ 𝑋 ) | |
| 8 | 7 | 3anassrs | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑝 ∈ 𝑋 ) |
| 9 | 8 | snssd | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → { 𝑝 } ⊆ 𝑋 ) |
| 10 | simpl3 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) → 𝑏 ⊆ 𝑋 ) | |
| 11 | 10 | 3anassrs | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑏 ⊆ 𝑋 ) |
| 12 | xpss12 | ⊢ ( ( { 𝑝 } ⊆ 𝑋 ∧ 𝑏 ⊆ 𝑋 ) → ( { 𝑝 } × 𝑏 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( { 𝑝 } × 𝑏 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 14 | 6 13 | unssd | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 15 | ssun1 | ⊢ 𝑤 ⊆ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) | |
| 16 | 15 | a1i | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑤 ⊆ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ) |
| 17 | ustssel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ∧ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑤 ⊆ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) → ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ∈ 𝑈 ) ) | |
| 18 | 17 | imp | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ∧ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑤 ⊆ ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ) → ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ∈ 𝑈 ) |
| 19 | 3 4 14 16 18 | syl31anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ∈ 𝑈 ) |
| 20 | simpl2 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) → 𝑎 ⊆ 𝑏 ) | |
| 21 | 20 | 3anassrs | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑎 ⊆ 𝑏 ) |
| 22 | ssequn1 | ⊢ ( 𝑎 ⊆ 𝑏 ↔ ( 𝑎 ∪ 𝑏 ) = 𝑏 ) | |
| 23 | 22 | biimpi | ⊢ ( 𝑎 ⊆ 𝑏 → ( 𝑎 ∪ 𝑏 ) = 𝑏 ) |
| 24 | id | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → 𝑎 = ( 𝑤 “ { 𝑝 } ) ) | |
| 25 | inidm | ⊢ ( { 𝑝 } ∩ { 𝑝 } ) = { 𝑝 } | |
| 26 | vex | ⊢ 𝑝 ∈ V | |
| 27 | 26 | snnz | ⊢ { 𝑝 } ≠ ∅ |
| 28 | 25 27 | eqnetri | ⊢ ( { 𝑝 } ∩ { 𝑝 } ) ≠ ∅ |
| 29 | xpima2 | ⊢ ( ( { 𝑝 } ∩ { 𝑝 } ) ≠ ∅ → ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) = 𝑏 ) | |
| 30 | 28 29 | mp1i | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) = 𝑏 ) |
| 31 | 30 | eqcomd | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → 𝑏 = ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) ) |
| 32 | 24 31 | uneq12d | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → ( 𝑎 ∪ 𝑏 ) = ( ( 𝑤 “ { 𝑝 } ) ∪ ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) ) ) |
| 33 | imaundir | ⊢ ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) = ( ( 𝑤 “ { 𝑝 } ) ∪ ( ( { 𝑝 } × 𝑏 ) “ { 𝑝 } ) ) | |
| 34 | 32 33 | eqtr4di | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → ( 𝑎 ∪ 𝑏 ) = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) |
| 35 | 23 34 | sylan9req | ⊢ ( ( 𝑎 ⊆ 𝑏 ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑏 = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) |
| 36 | 21 35 | sylancom | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑏 = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) |
| 37 | imaeq1 | ⊢ ( 𝑢 = ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) → ( 𝑢 “ { 𝑝 } ) = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) | |
| 38 | 37 | rspceeqv | ⊢ ( ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) ∈ 𝑈 ∧ 𝑏 = ( ( 𝑤 ∪ ( { 𝑝 } × 𝑏 ) ) “ { 𝑝 } ) ) → ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) |
| 39 | 19 36 38 | syl2anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) |
| 40 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ V ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 41 | 40 | elvd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 42 | 41 | biimpa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
| 43 | 42 | 3ad2antl1 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
| 44 | 39 43 | r19.29a | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) |
| 45 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑏 ∈ V ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
| 46 | 45 | elvd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
| 47 | 46 | 3ad2ant1 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑢 ∈ 𝑈 𝑏 = ( 𝑢 “ { 𝑝 } ) ) ) |
| 49 | 44 48 | mpbird | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |