This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| Assertion | ustuqtop4 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 2 | simplll | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ) | |
| 3 | simplr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) → 𝑢 ∈ 𝑈 ) | |
| 4 | eqid | ⊢ ( 𝑢 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) | |
| 5 | imaeq1 | ⊢ ( 𝑤 = 𝑢 → ( 𝑤 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) | |
| 6 | 5 | rspceeqv | ⊢ ( ( 𝑢 ∈ 𝑈 ∧ ( 𝑢 “ { 𝑝 } ) = ( 𝑢 “ { 𝑝 } ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) |
| 7 | 4 6 | mpan2 | ⊢ ( 𝑢 ∈ 𝑈 → ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) |
| 9 | imaexg | ⊢ ( 𝑢 ∈ 𝑈 → ( 𝑢 “ { 𝑝 } ) ∈ V ) | |
| 10 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑝 } ) ∈ V ) → ( ( 𝑢 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) ) |
| 11 | 9 10 | sylan2 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → ( ( 𝑢 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑝 } ) = ( 𝑤 “ { 𝑝 } ) ) ) |
| 12 | 8 11 | mpbird | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 13 | 2 3 12 | syl2anc | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) → ( 𝑢 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 14 | simp-5l | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 15 | 2 | simpld | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 16 | simp-4r | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) → 𝑝 ∈ 𝑋 ) | |
| 17 | ustimasn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋 ) → ( 𝑢 “ { 𝑝 } ) ⊆ 𝑋 ) | |
| 18 | 15 3 16 17 | syl3anc | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) → ( 𝑢 “ { 𝑝 } ) ⊆ 𝑋 ) |
| 19 | 18 | sselda | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → 𝑞 ∈ 𝑋 ) |
| 20 | 14 19 | jca | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ) |
| 21 | simplr | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) | |
| 22 | simp-6l | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 23 | simp-4r | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑢 ∈ 𝑈 ) | |
| 24 | ustrel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → Rel 𝑢 ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → Rel 𝑢 ) |
| 26 | elrelimasn | ⊢ ( Rel 𝑢 → ( 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ↔ 𝑝 𝑢 𝑞 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → ( 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ↔ 𝑝 𝑢 𝑞 ) ) |
| 28 | 21 27 | mpbid | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑝 𝑢 𝑞 ) |
| 29 | simpr | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) | |
| 30 | elrelimasn | ⊢ ( Rel 𝑢 → ( 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ↔ 𝑞 𝑢 𝑟 ) ) | |
| 31 | 25 30 | syl | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → ( 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ↔ 𝑞 𝑢 𝑟 ) ) |
| 32 | 29 31 | mpbid | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑞 𝑢 𝑟 ) |
| 33 | vex | ⊢ 𝑝 ∈ V | |
| 34 | vex | ⊢ 𝑟 ∈ V | |
| 35 | 33 34 | brco | ⊢ ( 𝑝 ( 𝑢 ∘ 𝑢 ) 𝑟 ↔ ∃ 𝑞 ( 𝑝 𝑢 𝑞 ∧ 𝑞 𝑢 𝑟 ) ) |
| 36 | 35 | biimpri | ⊢ ( ∃ 𝑞 ( 𝑝 𝑢 𝑞 ∧ 𝑞 𝑢 𝑟 ) → 𝑝 ( 𝑢 ∘ 𝑢 ) 𝑟 ) |
| 37 | 36 | 19.23bi | ⊢ ( ( 𝑝 𝑢 𝑞 ∧ 𝑞 𝑢 𝑟 ) → 𝑝 ( 𝑢 ∘ 𝑢 ) 𝑟 ) |
| 38 | 28 32 37 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑝 ( 𝑢 ∘ 𝑢 ) 𝑟 ) |
| 39 | simpllr | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) | |
| 40 | 39 | ssbrd | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → ( 𝑝 ( 𝑢 ∘ 𝑢 ) 𝑟 → 𝑝 𝑤 𝑟 ) ) |
| 41 | 38 40 | mpd | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑝 𝑤 𝑟 ) |
| 42 | simp-5r | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑤 ∈ 𝑈 ) | |
| 43 | ustrel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → Rel 𝑤 ) | |
| 44 | 22 42 43 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → Rel 𝑤 ) |
| 45 | elrelimasn | ⊢ ( Rel 𝑤 → ( 𝑟 ∈ ( 𝑤 “ { 𝑝 } ) ↔ 𝑝 𝑤 𝑟 ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → ( 𝑟 ∈ ( 𝑤 “ { 𝑝 } ) ↔ 𝑝 𝑤 𝑟 ) ) |
| 47 | 41 46 | mpbird | ⊢ ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) ∧ 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) ) → 𝑟 ∈ ( 𝑤 “ { 𝑝 } ) ) |
| 48 | 47 | ex | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → ( 𝑟 ∈ ( 𝑢 “ { 𝑞 } ) → 𝑟 ∈ ( 𝑤 “ { 𝑝 } ) ) ) |
| 49 | 48 | ssrdv | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ) |
| 50 | simp-4r | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → 𝑤 ∈ 𝑈 ) | |
| 51 | 16 | adantr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → 𝑝 ∈ 𝑋 ) |
| 52 | ustimasn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋 ) → ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) | |
| 53 | 14 50 51 52 | syl3anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) |
| 54 | 20 49 53 | 3jca | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ) |
| 55 | simpllr | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → 𝑢 ∈ 𝑈 ) | |
| 56 | eqidd | ⊢ ( 𝑢 ∈ 𝑈 → ( 𝑢 “ { 𝑞 } ) = ( 𝑢 “ { 𝑞 } ) ) | |
| 57 | imaeq1 | ⊢ ( 𝑤 = 𝑢 → ( 𝑤 “ { 𝑞 } ) = ( 𝑢 “ { 𝑞 } ) ) | |
| 58 | 57 | rspceeqv | ⊢ ( ( 𝑢 ∈ 𝑈 ∧ ( 𝑢 “ { 𝑞 } ) = ( 𝑢 “ { 𝑞 } ) ) → ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑞 } ) = ( 𝑤 “ { 𝑞 } ) ) |
| 59 | 56 58 | mpdan | ⊢ ( 𝑢 ∈ 𝑈 → ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑞 } ) = ( 𝑤 “ { 𝑞 } ) ) |
| 60 | 59 | adantl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑞 } ) = ( 𝑤 “ { 𝑞 } ) ) |
| 61 | imaexg | ⊢ ( 𝑢 ∈ 𝑈 → ( 𝑢 “ { 𝑞 } ) ∈ V ) | |
| 62 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ V ) → ( ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑞 } ) = ( 𝑤 “ { 𝑞 } ) ) ) |
| 63 | 61 62 | sylan2 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → ( ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝑢 “ { 𝑞 } ) = ( 𝑤 “ { 𝑞 } ) ) ) |
| 64 | 60 63 | mpbird | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 65 | 14 19 55 64 | syl21anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 66 | 54 65 | jca | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 67 | imaexg | ⊢ ( 𝑤 ∈ 𝑈 → ( 𝑤 “ { 𝑝 } ) ∈ V ) | |
| 68 | sseq2 | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ↔ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ) ) | |
| 69 | sseq1 | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( 𝑏 ⊆ 𝑋 ↔ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ) | |
| 70 | 68 69 | 3anbi23d | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ↔ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ) ) |
| 71 | 70 | anbi1d | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ↔ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) ) |
| 72 | 71 | anbi1d | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ∧ 𝑢 ∈ 𝑈 ) ↔ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ∧ 𝑢 ∈ 𝑈 ) ) ) |
| 73 | eleq1 | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ↔ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) | |
| 74 | 72 73 | imbi12d | ⊢ ( 𝑏 = ( 𝑤 “ { 𝑝 } ) → ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ∧ 𝑢 ∈ 𝑈 ) → 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) ↔ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ∧ 𝑢 ∈ 𝑈 ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) ) |
| 75 | sseq1 | ⊢ ( 𝑎 = ( 𝑢 “ { 𝑞 } ) → ( 𝑎 ⊆ 𝑏 ↔ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ) ) | |
| 76 | 75 | 3anbi2d | ⊢ ( 𝑎 = ( 𝑢 “ { 𝑞 } ) → ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ↔ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ) ) |
| 77 | eleq1 | ⊢ ( 𝑎 = ( 𝑢 “ { 𝑞 } ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ↔ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) | |
| 78 | 76 77 | anbi12d | ⊢ ( 𝑎 = ( 𝑢 “ { 𝑞 } ) → ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) ↔ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) ) |
| 79 | 78 | imbi1d | ⊢ ( 𝑎 = ( 𝑢 “ { 𝑞 } ) → ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) ↔ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) ) ) |
| 80 | eleq1 | ⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∈ 𝑋 ↔ 𝑞 ∈ 𝑋 ) ) | |
| 81 | 80 | anbi2d | ⊢ ( 𝑝 = 𝑞 → ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ) ) |
| 82 | 81 | 3anbi1d | ⊢ ( 𝑝 = 𝑞 → ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ↔ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ) ) |
| 83 | fveq2 | ⊢ ( 𝑝 = 𝑞 → ( 𝑁 ‘ 𝑝 ) = ( 𝑁 ‘ 𝑞 ) ) | |
| 84 | 83 | eleq2d | ⊢ ( 𝑝 = 𝑞 → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 85 | 82 84 | anbi12d | ⊢ ( 𝑝 = 𝑞 → ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) ) ) |
| 86 | 83 | eleq2d | ⊢ ( 𝑝 = 𝑞 → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 87 | 85 86 | imbi12d | ⊢ ( 𝑝 = 𝑞 → ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) ) ) |
| 88 | 1 | ustuqtop1 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 89 | 87 88 | chvarvv | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 90 | 79 89 | vtoclg | ⊢ ( ( 𝑢 “ { 𝑞 } ) ∈ V → ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 91 | 61 90 | syl | ⊢ ( 𝑢 ∈ 𝑈 → ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 92 | 91 | impcom | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ∧ 𝑢 ∈ 𝑈 ) → 𝑏 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 93 | 74 92 | vtoclg | ⊢ ( ( 𝑤 “ { 𝑝 } ) ∈ V → ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ∧ 𝑢 ∈ 𝑈 ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 94 | 67 93 | syl | ⊢ ( 𝑤 ∈ 𝑈 → ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ∧ 𝑢 ∈ 𝑈 ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 95 | 94 | impcom | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑞 ∈ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ∧ ( 𝑤 “ { 𝑝 } ) ⊆ 𝑋 ) ∧ ( 𝑢 “ { 𝑞 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 96 | 66 55 50 95 | syl21anc | ⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) ∧ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ) → ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 97 | 96 | ralrimiva | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) → ∀ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 98 | raleq | ⊢ ( 𝑏 = ( 𝑢 “ { 𝑝 } ) → ( ∀ 𝑞 ∈ 𝑏 ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ↔ ∀ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) | |
| 99 | 98 | rspcev | ⊢ ( ( ( 𝑢 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑝 ) ∧ ∀ 𝑞 ∈ ( 𝑢 “ { 𝑝 } ) ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 100 | 13 97 99 | syl2anc | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 101 | ustexhalf | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) | |
| 102 | 101 | adantlr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 ∘ 𝑢 ) ⊆ 𝑤 ) |
| 103 | 100 102 | r19.29a | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 104 | 103 | adantr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 105 | eleq1 | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ↔ ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) | |
| 106 | 105 | rexralbidv | ⊢ ( 𝑎 = ( 𝑤 “ { 𝑝 } ) → ( ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ↔ ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 107 | 106 | adantl | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ↔ ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 ( 𝑤 “ { 𝑝 } ) ∈ ( 𝑁 ‘ 𝑞 ) ) ) |
| 108 | 104 107 | mpbird | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 109 | 108 | adantllr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |
| 110 | vex | ⊢ 𝑎 ∈ V | |
| 111 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ V ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 112 | 110 111 | mpan2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 113 | 112 | biimpa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
| 114 | 109 113 | r19.29a | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) |