This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a given uniform structure U on a set X , there is a unique topology j such that the set ran ( v e. U |-> ( v " { p } ) ) is the filter of the neighborhoods of p for that topology. Proposition 1 of BourbakiTop1 p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| Assertion | ustuqtop | |- ( U e. ( UnifOn ` X ) -> E! j e. ( TopOn ` X ) A. p e. X ( N ` p ) = ( ( nei ` j ) ` { p } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| 2 | fveq2 | |- ( p = r -> ( N ` p ) = ( N ` r ) ) |
|
| 3 | 2 | eleq2d | |- ( p = r -> ( c e. ( N ` p ) <-> c e. ( N ` r ) ) ) |
| 4 | 3 | cbvralvw | |- ( A. p e. c c e. ( N ` p ) <-> A. r e. c c e. ( N ` r ) ) |
| 5 | eleq1w | |- ( c = a -> ( c e. ( N ` p ) <-> a e. ( N ` p ) ) ) |
|
| 6 | 5 | raleqbi1dv | |- ( c = a -> ( A. p e. c c e. ( N ` p ) <-> A. p e. a a e. ( N ` p ) ) ) |
| 7 | 4 6 | bitr3id | |- ( c = a -> ( A. r e. c c e. ( N ` r ) <-> A. p e. a a e. ( N ` p ) ) ) |
| 8 | 7 | cbvrabv | |- { c e. ~P X | A. r e. c c e. ( N ` r ) } = { a e. ~P X | A. p e. a a e. ( N ` p ) } |
| 9 | 1 | ustuqtop0 | |- ( U e. ( UnifOn ` X ) -> N : X --> ~P ~P X ) |
| 10 | 1 | ustuqtop1 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> b e. ( N ` p ) ) |
| 11 | 1 | ustuqtop2 | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( fi ` ( N ` p ) ) C_ ( N ` p ) ) |
| 12 | 1 | ustuqtop3 | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> p e. a ) |
| 13 | 1 | ustuqtop4 | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> E. b e. ( N ` p ) A. x e. b a e. ( N ` x ) ) |
| 14 | 1 | ustuqtop5 | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> X e. ( N ` p ) ) |
| 15 | 8 9 10 11 12 13 14 | neiptopreu | |- ( U e. ( UnifOn ` X ) -> E! j e. ( TopOn ` X ) N = ( p e. X |-> ( ( nei ` j ) ` { p } ) ) ) |
| 16 | 9 | feqmptd | |- ( U e. ( UnifOn ` X ) -> N = ( p e. X |-> ( N ` p ) ) ) |
| 17 | 16 | eqeq1d | |- ( U e. ( UnifOn ` X ) -> ( N = ( p e. X |-> ( ( nei ` j ) ` { p } ) ) <-> ( p e. X |-> ( N ` p ) ) = ( p e. X |-> ( ( nei ` j ) ` { p } ) ) ) ) |
| 18 | fvex | |- ( N ` p ) e. _V |
|
| 19 | 18 | rgenw | |- A. p e. X ( N ` p ) e. _V |
| 20 | mpteqb | |- ( A. p e. X ( N ` p ) e. _V -> ( ( p e. X |-> ( N ` p ) ) = ( p e. X |-> ( ( nei ` j ) ` { p } ) ) <-> A. p e. X ( N ` p ) = ( ( nei ` j ) ` { p } ) ) ) |
|
| 21 | 19 20 | ax-mp | |- ( ( p e. X |-> ( N ` p ) ) = ( p e. X |-> ( ( nei ` j ) ` { p } ) ) <-> A. p e. X ( N ` p ) = ( ( nei ` j ) ` { p } ) ) |
| 22 | 17 21 | bitrdi | |- ( U e. ( UnifOn ` X ) -> ( N = ( p e. X |-> ( ( nei ` j ) ` { p } ) ) <-> A. p e. X ( N ` p ) = ( ( nei ` j ) ` { p } ) ) ) |
| 23 | 22 | reubidv | |- ( U e. ( UnifOn ` X ) -> ( E! j e. ( TopOn ` X ) N = ( p e. X |-> ( ( nei ` j ) ` { p } ) ) <-> E! j e. ( TopOn ` X ) A. p e. X ( N ` p ) = ( ( nei ` j ) ` { p } ) ) ) |
| 24 | 15 23 | mpbid | |- ( U e. ( UnifOn ` X ) -> E! j e. ( TopOn ` X ) A. p e. X ( N ` p ) = ( ( nei ` j ) ` { p } ) ) |