This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| Assertion | ustuqtop5 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 2 | ustbasel | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 ) | |
| 3 | snssi | ⊢ ( 𝑝 ∈ 𝑋 → { 𝑝 } ⊆ 𝑋 ) | |
| 4 | dfss | ⊢ ( { 𝑝 } ⊆ 𝑋 ↔ { 𝑝 } = ( { 𝑝 } ∩ 𝑋 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝑝 ∈ 𝑋 → { 𝑝 } = ( { 𝑝 } ∩ 𝑋 ) ) |
| 6 | incom | ⊢ ( { 𝑝 } ∩ 𝑋 ) = ( 𝑋 ∩ { 𝑝 } ) | |
| 7 | 5 6 | eqtr2di | ⊢ ( 𝑝 ∈ 𝑋 → ( 𝑋 ∩ { 𝑝 } ) = { 𝑝 } ) |
| 8 | snnzg | ⊢ ( 𝑝 ∈ 𝑋 → { 𝑝 } ≠ ∅ ) | |
| 9 | 7 8 | eqnetrd | ⊢ ( 𝑝 ∈ 𝑋 → ( 𝑋 ∩ { 𝑝 } ) ≠ ∅ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑋 ∩ { 𝑝 } ) ≠ ∅ ) |
| 11 | xpima2 | ⊢ ( ( 𝑋 ∩ { 𝑝 } ) ≠ ∅ → ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) = 𝑋 ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) = 𝑋 ) |
| 13 | 12 | eqcomd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 = ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) ) |
| 14 | imaeq1 | ⊢ ( 𝑤 = ( 𝑋 × 𝑋 ) → ( 𝑤 “ { 𝑝 } ) = ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) ) | |
| 15 | 14 | rspceeqv | ⊢ ( ( ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ 𝑋 = ( ( 𝑋 × 𝑋 ) “ { 𝑝 } ) ) → ∃ 𝑤 ∈ 𝑈 𝑋 = ( 𝑤 “ { 𝑝 } ) ) |
| 16 | 2 13 15 | syl2an2r | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ∃ 𝑤 ∈ 𝑈 𝑋 = ( 𝑤 “ { 𝑝 } ) ) |
| 17 | elfvex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 18 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑋 ∈ V ) → ( 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑋 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 19 | 17 18 | mpidan | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑋 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 20 | 16 19 | mpbird | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |