This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop , similar to elnei . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| Assertion | ustuqtop3 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 2 | fnresi | ⊢ ( I ↾ 𝑋 ) Fn 𝑋 | |
| 3 | fnsnfv | ⊢ ( ( ( I ↾ 𝑋 ) Fn 𝑋 ∧ 𝑝 ∈ 𝑋 ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑝 ∈ 𝑋 → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ) |
| 5 | 4 | ad4antlr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } = ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ) |
| 6 | ustdiag | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑤 ) | |
| 7 | 6 | ad5ant14 | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( I ↾ 𝑋 ) ⊆ 𝑤 ) |
| 8 | imass1 | ⊢ ( ( I ↾ 𝑋 ) ⊆ 𝑤 → ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( ( I ↾ 𝑋 ) “ { 𝑝 } ) ⊆ ( 𝑤 “ { 𝑝 } ) ) |
| 10 | 5 9 | eqsstrd | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } ⊆ ( 𝑤 “ { 𝑝 } ) ) |
| 11 | fvex | ⊢ ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ V | |
| 12 | 11 | snss | ⊢ ( ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ ( 𝑤 “ { 𝑝 } ) ↔ { ( ( I ↾ 𝑋 ) ‘ 𝑝 ) } ⊆ ( 𝑤 “ { 𝑝 } ) ) |
| 13 | 10 12 | sylibr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ∈ ( 𝑤 “ { 𝑝 } ) ) |
| 14 | fvresi | ⊢ ( 𝑝 ∈ 𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑝 ) = 𝑝 ) | |
| 15 | 14 | eqcomd | ⊢ ( 𝑝 ∈ 𝑋 → 𝑝 = ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ) |
| 16 | 15 | ad4antlr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑝 = ( ( I ↾ 𝑋 ) ‘ 𝑝 ) ) |
| 17 | simpr | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑎 = ( 𝑤 “ { 𝑝 } ) ) | |
| 18 | 13 16 17 | 3eltr4d | ⊢ ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ∧ 𝑤 ∈ 𝑈 ) ∧ 𝑎 = ( 𝑤 “ { 𝑝 } ) ) → 𝑝 ∈ 𝑎 ) |
| 19 | 1 | ustuqtoplem | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ V ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 20 | 19 | elvd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) ) |
| 21 | 20 | biimpa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑤 ∈ 𝑈 𝑎 = ( 𝑤 “ { 𝑝 } ) ) |
| 22 | 18 21 | r19.29a | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) |