This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| Assertion | ustuqtop0 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | ⊢ 𝑁 = ( 𝑝 ∈ 𝑋 ↦ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ) | |
| 2 | ustimasn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋 ) → ( 𝑣 “ { 𝑝 } ) ⊆ 𝑋 ) | |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝑣 “ { 𝑝 } ) ⊆ 𝑋 ) |
| 4 | 3 | an32s | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑝 } ) ⊆ 𝑋 ) |
| 5 | vex | ⊢ 𝑣 ∈ V | |
| 6 | 5 | imaex | ⊢ ( 𝑣 “ { 𝑝 } ) ∈ V |
| 7 | 6 | elpw | ⊢ ( ( 𝑣 “ { 𝑝 } ) ∈ 𝒫 𝑋 ↔ ( 𝑣 “ { 𝑝 } ) ⊆ 𝑋 ) |
| 8 | 4 7 | sylibr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 “ { 𝑝 } ) ∈ 𝒫 𝑋 ) |
| 9 | 8 | ralrimiva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ∀ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ∈ 𝒫 𝑋 ) |
| 10 | eqid | ⊢ ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) = ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) | |
| 11 | 10 | rnmptss | ⊢ ( ∀ 𝑣 ∈ 𝑈 ( 𝑣 “ { 𝑝 } ) ∈ 𝒫 𝑋 → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ⊆ 𝒫 𝑋 ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ⊆ 𝒫 𝑋 ) |
| 13 | mptexg | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) | |
| 14 | rnexg | ⊢ ( ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V ) | |
| 15 | elpwg | ⊢ ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ V → ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ 𝒫 𝒫 𝑋 ↔ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ⊆ 𝒫 𝑋 ) ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ 𝒫 𝒫 𝑋 ↔ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ⊆ 𝒫 𝑋 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ( ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ 𝒫 𝒫 𝑋 ↔ ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ⊆ 𝒫 𝑋 ) ) |
| 18 | 12 17 | mpbird | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑝 ∈ 𝑋 ) → ran ( 𝑣 ∈ 𝑈 ↦ ( 𝑣 “ { 𝑝 } ) ) ∈ 𝒫 𝒫 𝑋 ) |
| 19 | 18 1 | fmptd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) |