This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobeqterm.a | ⊢ 𝐴 = ( Base ‘ 𝐷 ) | |
| uobeqterm.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| uobeqterm.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| uobeqterm.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| uobeqterm.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| uobeqterm.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) | ||
| uobeqterm.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | ||
| uobeqterm.e | ⊢ ( 𝜑 → 𝐸 ∈ TermCat ) | ||
| Assertion | uobeqterm | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeqterm.a | ⊢ 𝐴 = ( Base ‘ 𝐷 ) | |
| 2 | uobeqterm.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 3 | uobeqterm.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 4 | uobeqterm.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | uobeqterm.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 6 | uobeqterm.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) | |
| 7 | uobeqterm.d | ⊢ ( 𝜑 → 𝐷 ∈ TermCat ) | |
| 8 | uobeqterm.e | ⊢ ( 𝜑 → 𝐸 ∈ TermCat ) | |
| 9 | eqid | ⊢ ( CatCat ‘ { 𝐷 , 𝐸 } ) = ( CatCat ‘ { 𝐷 , 𝐸 } ) | |
| 10 | eqid | ⊢ ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) = ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) | |
| 11 | prid1g | ⊢ ( 𝐷 ∈ TermCat → 𝐷 ∈ { 𝐷 , 𝐸 } ) | |
| 12 | 7 11 | syl | ⊢ ( 𝜑 → 𝐷 ∈ { 𝐷 , 𝐸 } ) |
| 13 | 7 | termccd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 14 | 12 13 | elind | ⊢ ( 𝜑 → 𝐷 ∈ ( { 𝐷 , 𝐸 } ∩ Cat ) ) |
| 15 | prex | ⊢ { 𝐷 , 𝐸 } ∈ V | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → { 𝐷 , 𝐸 } ∈ V ) |
| 17 | 9 10 16 | catcbas | ⊢ ( 𝜑 → ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) = ( { 𝐷 , 𝐸 } ∩ Cat ) ) |
| 18 | 14 17 | eleqtrrd | ⊢ ( 𝜑 → 𝐷 ∈ ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) ) |
| 19 | prid2g | ⊢ ( 𝐸 ∈ TermCat → 𝐸 ∈ { 𝐷 , 𝐸 } ) | |
| 20 | 8 19 | syl | ⊢ ( 𝜑 → 𝐸 ∈ { 𝐷 , 𝐸 } ) |
| 21 | 8 | termccd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 22 | 20 21 | elind | ⊢ ( 𝜑 → 𝐸 ∈ ( { 𝐷 , 𝐸 } ∩ Cat ) ) |
| 23 | 22 17 | eleqtrrd | ⊢ ( 𝜑 → 𝐸 ∈ ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) ) |
| 24 | 9 10 18 23 7 | termcciso | ⊢ ( 𝜑 → ( 𝐸 ∈ TermCat ↔ 𝐷 ( ≃𝑐 ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) |
| 25 | 8 24 | mpbid | ⊢ ( 𝜑 → 𝐷 ( ≃𝑐 ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) |
| 26 | eqid | ⊢ ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) = ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) | |
| 27 | 9 | catccat | ⊢ ( { 𝐷 , 𝐸 } ∈ V → ( CatCat ‘ { 𝐷 , 𝐸 } ) ∈ Cat ) |
| 28 | 16 27 | syl | ⊢ ( 𝜑 → ( CatCat ‘ { 𝐷 , 𝐸 } ) ∈ Cat ) |
| 29 | 26 10 28 18 23 | cic | ⊢ ( 𝜑 → ( 𝐷 ( ≃𝑐 ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ↔ ∃ 𝑘 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) ) |
| 30 | 25 29 | mpbid | ⊢ ( 𝜑 → ∃ 𝑘 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) |
| 31 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑋 ∈ 𝐴 ) |
| 32 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 33 | fullfunc | ⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) | |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) | |
| 35 | 9 1 2 26 34 | catcisoi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( 𝑘 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ∧ ( 1st ‘ 𝑘 ) : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 36 | 35 | simpld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑘 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 37 | 36 | elin1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑘 ∈ ( 𝐷 Full 𝐸 ) ) |
| 38 | 33 37 | sselid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑘 ∈ ( 𝐷 Func 𝐸 ) ) |
| 39 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) |
| 40 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝐸 ∈ TermCat ) |
| 41 | 32 38 39 40 | cofuterm | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( 𝑘 ∘func 𝐹 ) = 𝐺 ) |
| 42 | 38 | func1st2nd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( 1st ‘ 𝑘 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝑘 ) ) |
| 43 | 1 2 42 | funcf1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( 1st ‘ 𝑘 ) : 𝐴 ⟶ 𝐵 ) |
| 44 | 43 31 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( ( 1st ‘ 𝑘 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 45 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑌 ∈ 𝐵 ) |
| 46 | 40 2 44 45 | termcbasmo | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( ( 1st ‘ 𝑘 ) ‘ 𝑋 ) = 𝑌 ) |
| 47 | 1 31 32 41 46 9 26 34 | uobeq3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| 48 | 30 47 | exlimddv | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |