This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Objects X and Y in a category are isomorphic provided that there is an isomorphism f : X --> Y , see definition 3.15 of Adamek p. 29. (Contributed by AV, 4-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cic.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| cic.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| cic.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| cic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | cic | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cic.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 2 | cic.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | cic.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | cic.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | cic.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | 1 2 3 4 5 | brcic | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ( 𝑋 𝐼 𝑌 ) ≠ ∅ ) ) |
| 7 | n0 | ⊢ ( ( 𝑋 𝐼 𝑌 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 8 | 6 7 | bitrdi | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |