This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termcbasmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| termcbasmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | termcbasmo | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 2 | termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | termcbasmo.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | termcbasmo.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) | |
| 6 | eqeq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) | |
| 7 | 1 2 | termcbas | ⊢ ( 𝜑 → ∃ 𝑧 𝐵 = { 𝑧 } ) |
| 8 | mosn | ⊢ ( 𝐵 = { 𝑧 } → ∃* 𝑥 𝑥 ∈ 𝐵 ) | |
| 9 | 8 | exlimiv | ⊢ ( ∃ 𝑧 𝐵 = { 𝑧 } → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 10 | 7 9 | syl | ⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 11 | moel | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) | |
| 12 | 10 11 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 13 | 5 6 12 3 4 | rspc2dv | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) |