This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Post-compose with a functor to a terminal category. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofuterm.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| cofuterm.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) | ||
| cofuterm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐶 Func 𝐸 ) ) | ||
| cofuterm.e | ⊢ ( 𝜑 → 𝐸 ∈ TermCat ) | ||
| Assertion | cofuterm | ⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) = 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuterm.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 2 | cofuterm.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 3 | cofuterm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐶 Func 𝐸 ) ) | |
| 4 | cofuterm.e | ⊢ ( 𝜑 → 𝐸 ∈ TermCat ) | |
| 5 | eqid | ⊢ ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 ) | |
| 6 | 1 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 7 | 6 | funcrcl2 | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 | 5 7 4 | fucterm | ⊢ ( 𝜑 → ( 𝐶 FuncCat 𝐸 ) ∈ TermCat ) |
| 9 | 5 | fucbas | ⊢ ( 𝐶 Func 𝐸 ) = ( Base ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 10 | 1 2 | cofucl | ⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) ∈ ( 𝐶 Func 𝐸 ) ) |
| 11 | 8 9 10 3 | termcbasmo | ⊢ ( 𝜑 → ( 𝐺 ∘func 𝐹 ) = 𝐾 ) |