This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between categories generates equal sets of universal objects. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobeq2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| uobeq2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| uobeq2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| uobeq2.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | ||
| uobeq2.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | ||
| uobeq2.q | ⊢ 𝑄 = ( CatCat ‘ 𝑈 ) | ||
| uobeq3.i | ⊢ 𝐼 = ( Iso ‘ 𝑄 ) | ||
| uobeq3.1 | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 𝐼 𝐸 ) ) | ||
| Assertion | uobeq3 | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeq2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | uobeq2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | uobeq2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 4 | uobeq2.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | |
| 5 | uobeq2.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | |
| 6 | uobeq2.q | ⊢ 𝑄 = ( CatCat ‘ 𝑈 ) | |
| 7 | uobeq3.i | ⊢ 𝐼 = ( Iso ‘ 𝑄 ) | |
| 8 | uobeq3.1 | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 𝐼 𝐸 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 10 | 6 1 9 7 8 | catcisoi | ⊢ ( 𝜑 → ( 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ∧ ( 1st ‘ 𝐾 ) : 𝐵 –1-1-onto→ ( Base ‘ 𝐸 ) ) ) |
| 11 | 10 | simpld | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 12 | 1 2 3 4 5 11 | uobffth | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |