This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito4.1 | ⊢ ( 𝜑 → 1 ∈ TermCat ) | |
| isinito4.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 1 ) ) | ||
| isinito4.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 1 ) ) | ||
| Assertion | isinito4 | ⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito4.1 | ⊢ ( 𝜑 → 1 ∈ TermCat ) | |
| 2 | isinito4.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 1 ) ) | |
| 3 | isinito4.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 1 ) ) | |
| 4 | eqid | ⊢ ( SetCat ‘ 1o ) = ( SetCat ‘ 1o ) | |
| 5 | eqid | ⊢ ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) = ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) | |
| 6 | 4 5 | isinito3 | ⊢ ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) ( 𝐶 UP ( SetCat ‘ 1o ) ) ∅ ) ) |
| 7 | 4 | setc1obas | ⊢ 1o = ( Base ‘ ( SetCat ‘ 1o ) ) |
| 8 | eqid | ⊢ ( Base ‘ 1 ) = ( Base ‘ 1 ) | |
| 9 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ∅ ∈ 1o ) |
| 11 | 3 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 1 ) ( 2nd ‘ 𝐹 ) ) |
| 12 | 11 | funcrcl2 | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 13 | 4 5 12 | funcsetc1ocl | ⊢ ( 𝜑 → ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) ∈ ( 𝐶 Func ( SetCat ‘ 1o ) ) ) |
| 14 | setc1oterm | ⊢ ( SetCat ‘ 1o ) ∈ TermCat | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( SetCat ‘ 1o ) ∈ TermCat ) |
| 16 | 7 8 10 2 13 3 15 1 | uobeqterm | ⊢ ( 𝜑 → dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) ( 𝐶 UP ( SetCat ‘ 1o ) ) ∅ ) = dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝐼 ∈ dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝐶 ) ) ‘ ∅ ) ( 𝐶 UP ( SetCat ‘ 1o ) ) ∅ ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |
| 18 | 6 17 | bitrid | ⊢ ( 𝜑 → ( 𝐼 ∈ ( InitO ‘ 𝐶 ) ↔ 𝐼 ∈ dom ( 𝐹 ( 𝐶 UP 1 ) 𝑋 ) ) ) |