This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal objects and terminal categories. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobeqterm.a | |- A = ( Base ` D ) |
|
| uobeqterm.b | |- B = ( Base ` E ) |
||
| uobeqterm.x | |- ( ph -> X e. A ) |
||
| uobeqterm.y | |- ( ph -> Y e. B ) |
||
| uobeqterm.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uobeqterm.g | |- ( ph -> G e. ( C Func E ) ) |
||
| uobeqterm.d | |- ( ph -> D e. TermCat ) |
||
| uobeqterm.e | |- ( ph -> E e. TermCat ) |
||
| Assertion | uobeqterm | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeqterm.a | |- A = ( Base ` D ) |
|
| 2 | uobeqterm.b | |- B = ( Base ` E ) |
|
| 3 | uobeqterm.x | |- ( ph -> X e. A ) |
|
| 4 | uobeqterm.y | |- ( ph -> Y e. B ) |
|
| 5 | uobeqterm.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 6 | uobeqterm.g | |- ( ph -> G e. ( C Func E ) ) |
|
| 7 | uobeqterm.d | |- ( ph -> D e. TermCat ) |
|
| 8 | uobeqterm.e | |- ( ph -> E e. TermCat ) |
|
| 9 | eqid | |- ( CatCat ` { D , E } ) = ( CatCat ` { D , E } ) |
|
| 10 | eqid | |- ( Base ` ( CatCat ` { D , E } ) ) = ( Base ` ( CatCat ` { D , E } ) ) |
|
| 11 | prid1g | |- ( D e. TermCat -> D e. { D , E } ) |
|
| 12 | 7 11 | syl | |- ( ph -> D e. { D , E } ) |
| 13 | 7 | termccd | |- ( ph -> D e. Cat ) |
| 14 | 12 13 | elind | |- ( ph -> D e. ( { D , E } i^i Cat ) ) |
| 15 | prex | |- { D , E } e. _V |
|
| 16 | 15 | a1i | |- ( ph -> { D , E } e. _V ) |
| 17 | 9 10 16 | catcbas | |- ( ph -> ( Base ` ( CatCat ` { D , E } ) ) = ( { D , E } i^i Cat ) ) |
| 18 | 14 17 | eleqtrrd | |- ( ph -> D e. ( Base ` ( CatCat ` { D , E } ) ) ) |
| 19 | prid2g | |- ( E e. TermCat -> E e. { D , E } ) |
|
| 20 | 8 19 | syl | |- ( ph -> E e. { D , E } ) |
| 21 | 8 | termccd | |- ( ph -> E e. Cat ) |
| 22 | 20 21 | elind | |- ( ph -> E e. ( { D , E } i^i Cat ) ) |
| 23 | 22 17 | eleqtrrd | |- ( ph -> E e. ( Base ` ( CatCat ` { D , E } ) ) ) |
| 24 | 9 10 18 23 7 | termcciso | |- ( ph -> ( E e. TermCat <-> D ( ~=c ` ( CatCat ` { D , E } ) ) E ) ) |
| 25 | 8 24 | mpbid | |- ( ph -> D ( ~=c ` ( CatCat ` { D , E } ) ) E ) |
| 26 | eqid | |- ( Iso ` ( CatCat ` { D , E } ) ) = ( Iso ` ( CatCat ` { D , E } ) ) |
|
| 27 | 9 | catccat | |- ( { D , E } e. _V -> ( CatCat ` { D , E } ) e. Cat ) |
| 28 | 16 27 | syl | |- ( ph -> ( CatCat ` { D , E } ) e. Cat ) |
| 29 | 26 10 28 18 23 | cic | |- ( ph -> ( D ( ~=c ` ( CatCat ` { D , E } ) ) E <-> E. k k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) ) |
| 30 | 25 29 | mpbid | |- ( ph -> E. k k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) |
| 31 | 3 | adantr | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> X e. A ) |
| 32 | 5 | adantr | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> F e. ( C Func D ) ) |
| 33 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 34 | simpr | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) |
|
| 35 | 9 1 2 26 34 | catcisoi | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( k e. ( ( D Full E ) i^i ( D Faith E ) ) /\ ( 1st ` k ) : A -1-1-onto-> B ) ) |
| 36 | 35 | simpld | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> k e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 37 | 36 | elin1d | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> k e. ( D Full E ) ) |
| 38 | 33 37 | sselid | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> k e. ( D Func E ) ) |
| 39 | 6 | adantr | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> G e. ( C Func E ) ) |
| 40 | 8 | adantr | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> E e. TermCat ) |
| 41 | 32 38 39 40 | cofuterm | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( k o.func F ) = G ) |
| 42 | 38 | func1st2nd | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( 1st ` k ) ( D Func E ) ( 2nd ` k ) ) |
| 43 | 1 2 42 | funcf1 | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( 1st ` k ) : A --> B ) |
| 44 | 43 31 | ffvelcdmd | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( ( 1st ` k ) ` X ) e. B ) |
| 45 | 4 | adantr | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> Y e. B ) |
| 46 | 40 2 44 45 | termcbasmo | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> ( ( 1st ` k ) ` X ) = Y ) |
| 47 | 1 31 32 41 46 9 26 34 | uobeq3 | |- ( ( ph /\ k e. ( D ( Iso ` ( CatCat ` { D , E } ) ) E ) ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| 48 | 30 47 | exlimddv | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |