This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category is isomorphic to a terminal category iff it itself is terminal. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcciso.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| termcciso.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termcciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| termcciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| termcciso.t | ⊢ ( 𝜑 → 𝑋 ∈ TermCat ) | ||
| Assertion | termcciso | ⊢ ( 𝜑 → ( 𝑌 ∈ TermCat ↔ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcciso.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | termcciso.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | termcciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | termcciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | termcciso.t | ⊢ ( 𝜑 → 𝑋 ∈ TermCat ) | |
| 6 | 1 2 | elbasfv | ⊢ ( 𝑋 ∈ 𝐵 → 𝑈 ∈ V ) |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 8 | 1 | catccat | ⊢ ( 𝑈 ∈ V → 𝐶 ∈ Cat ) |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝐶 ∈ Cat ) |
| 11 | 1 2 7 | catcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 12 | 3 11 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Cat ) ) |
| 13 | 12 | elin1d | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 14 | 1 7 13 5 | termcterm | ⊢ ( 𝜑 → 𝑋 ∈ ( TermO ‘ 𝐶 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑋 ∈ ( TermO ‘ 𝐶 ) ) |
| 16 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑈 ∈ V ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ 𝐵 ) |
| 18 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 19 | 17 18 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ ( 𝑈 ∩ Cat ) ) |
| 20 | 19 | elin1d | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ 𝑈 ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ TermCat ) | |
| 22 | 1 16 20 21 | termcterm | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ ( TermO ‘ 𝐶 ) ) |
| 23 | 10 15 22 | termoeu1w | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |
| 24 | 13 5 | elind | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ TermCat ) ) |
| 25 | 24 | ne0d | ⊢ ( 𝜑 → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 27 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝐶 ∈ Cat ) |
| 28 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝑋 ∈ ( TermO ‘ 𝐶 ) ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) | |
| 30 | 27 28 29 | termoeu2 | ⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝑌 ∈ ( TermO ‘ 𝐶 ) ) |
| 31 | 1 26 30 | termcterm2 | ⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝑌 ∈ TermCat ) |
| 32 | 23 31 | impbida | ⊢ ( 𝜑 → ( 𝑌 ∈ TermCat ↔ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) ) |