This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor is an isomorphism of categories only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in Adamek p. 34. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcisoi.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcisoi.r | ⊢ 𝑅 = ( Base ‘ 𝑋 ) | ||
| catcisoi.s | ⊢ 𝑆 = ( Base ‘ 𝑌 ) | ||
| catcisoi.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| catcisoi.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| Assertion | catcisoi | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝐹 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcisoi.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcisoi.r | ⊢ 𝑅 = ( Base ‘ 𝑋 ) | |
| 3 | catcisoi.s | ⊢ 𝑆 = ( Base ‘ 𝑌 ) | |
| 4 | catcisoi.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 5 | catcisoi.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | 4 5 6 | isorcl2 | ⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 8 | 7 | simpld | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 9 | 1 6 | elbasfv | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐶 ) → 𝑈 ∈ V ) |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 11 | 7 | simprd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 12 | 1 6 2 3 10 8 11 4 | catciso | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝐹 ) : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 13 | 5 12 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝐹 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |