This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domwdom | ⊢ ( 𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqne | ⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
| 3 | reldom | ⊢ Rel ≼ | |
| 4 | 3 | brrelex1i | ⊢ ( 𝑋 ≼ 𝑌 → 𝑋 ∈ V ) |
| 5 | 0sdomg | ⊢ ( 𝑋 ∈ V → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑋 ≼ 𝑌 → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
| 8 | 2 7 | mpbird | ⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → ∅ ≺ 𝑋 ) |
| 9 | simpl | ⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≼ 𝑌 ) | |
| 10 | fodomr | ⊢ ( ( ∅ ≺ 𝑋 ∧ 𝑋 ≼ 𝑌 ) → ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝑋 ≼ 𝑌 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) |
| 12 | 11 | ex | ⊢ ( 𝑋 ≼ 𝑌 → ( ¬ 𝑋 = ∅ → ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) ) |
| 13 | 12 | orrd | ⊢ ( 𝑋 ≼ 𝑌 → ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) ) |
| 14 | 3 | brrelex2i | ⊢ ( 𝑋 ≼ 𝑌 → 𝑌 ∈ V ) |
| 15 | brwdom | ⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑋 ≼ 𝑌 → ( 𝑋 ≼* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑦 𝑦 : 𝑌 –onto→ 𝑋 ) ) ) |
| 17 | 13 16 | mpbird | ⊢ ( 𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌 ) |