This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is weakly dominant over its image under any function. This version of wdomimag is stated so as to avoid ax-rep . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdomima2g | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 “ 𝐴 ) ≼* 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | ⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) | |
| 2 | funres | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝐴 ) ) | |
| 3 | funforn | ⊢ ( Fun ( 𝐹 ↾ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) |
| 6 | fof | ⊢ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ran ( 𝐹 ↾ 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ran ( 𝐹 ↾ 𝐴 ) ) |
| 8 | dmres | ⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) | |
| 9 | inss1 | ⊢ ( 𝐴 ∩ dom 𝐹 ) ⊆ 𝐴 | |
| 10 | 8 9 | eqsstri | ⊢ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 |
| 11 | simp2 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) | |
| 12 | ssexg | ⊢ ( ( dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → dom ( 𝐹 ↾ 𝐴 ) ∈ V ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → dom ( 𝐹 ↾ 𝐴 ) ∈ V ) |
| 14 | simp3 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) | |
| 15 | 1 14 | eqeltrrid | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ran ( 𝐹 ↾ 𝐴 ) ∈ 𝑊 ) |
| 16 | fex2 | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ran ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) ∈ V ∧ ran ( 𝐹 ↾ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) ∈ V ) | |
| 17 | 7 13 15 16 | syl3anc | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 ↾ 𝐴 ) ∈ V ) |
| 18 | fowdom | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) ∈ V ∧ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) –onto→ ran ( 𝐹 ↾ 𝐴 ) ) → ran ( 𝐹 ↾ 𝐴 ) ≼* dom ( 𝐹 ↾ 𝐴 ) ) | |
| 19 | 17 5 18 | syl2anc | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ran ( 𝐹 ↾ 𝐴 ) ≼* dom ( 𝐹 ↾ 𝐴 ) ) |
| 20 | ssdomg | ⊢ ( 𝐴 ∈ 𝑉 → ( dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) ) | |
| 21 | 10 20 | mpi | ⊢ ( 𝐴 ∈ 𝑉 → dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 ) |
| 22 | domwdom | ⊢ ( dom ( 𝐹 ↾ 𝐴 ) ≼ 𝐴 → dom ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐴 ∈ 𝑉 → dom ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → dom ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) |
| 25 | wdomtr | ⊢ ( ( ran ( 𝐹 ↾ 𝐴 ) ≼* dom ( 𝐹 ↾ 𝐴 ) ∧ dom ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) → ran ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) | |
| 26 | 19 24 25 | syl2anc | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ran ( 𝐹 ↾ 𝐴 ) ≼* 𝐴 ) |
| 27 | 1 26 | eqbrtrid | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ ( 𝐹 “ 𝐴 ) ∈ 𝑊 ) → ( 𝐹 “ 𝐴 ) ≼* 𝐴 ) |