This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng does not need ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1imaen2g | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) | |
| 2 | simplr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 3 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 4 | fimass | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 “ 𝐶 ) ⊆ 𝐵 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 “ 𝐶 ) ⊆ 𝐵 ) |
| 7 | 2 6 | ssexd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 “ 𝐶 ) ∈ V ) |
| 8 | f1ores | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) | |
| 9 | 8 | ad2ant2r | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |
| 10 | f1oen2g | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( 𝐹 “ 𝐶 ) ∈ V ∧ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) → 𝐶 ≈ ( 𝐹 “ 𝐶 ) ) | |
| 11 | 1 7 9 10 | syl3anc | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ≈ ( 𝐹 “ 𝐶 ) ) |
| 12 | 11 | ensymd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐹 “ 𝐶 ) ≈ 𝐶 ) |