This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of KanamoriPincus p. 420. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unxpwdom | ⊢ ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex2i | ⊢ ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) → ( 𝐵 ∪ 𝐶 ) ∈ V ) |
| 3 | domeng | ⊢ ( ( 𝐵 ∪ 𝐶 ) ∈ V → ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ↔ ∃ 𝑥 ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) → ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ↔ ∃ 𝑥 ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) ) |
| 5 | 4 | ibi | ⊢ ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) → ∃ 𝑥 ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) |
| 6 | simprl | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝐴 × 𝐴 ) ≈ 𝑥 ) | |
| 7 | indi | ⊢ ( 𝑥 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝑥 ∩ 𝐵 ) ∪ ( 𝑥 ∩ 𝐶 ) ) | |
| 8 | simprr | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) | |
| 9 | dfss2 | ⊢ ( 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑥 ∩ ( 𝐵 ∪ 𝐶 ) ) = 𝑥 ) | |
| 10 | 8 9 | sylib | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝑥 ∩ ( 𝐵 ∪ 𝐶 ) ) = 𝑥 ) |
| 11 | 7 10 | eqtr3id | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( ( 𝑥 ∩ 𝐵 ) ∪ ( 𝑥 ∩ 𝐶 ) ) = 𝑥 ) |
| 12 | 6 11 | breqtrrd | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝐴 × 𝐴 ) ≈ ( ( 𝑥 ∩ 𝐵 ) ∪ ( 𝑥 ∩ 𝐶 ) ) ) |
| 13 | unxpwdom2 | ⊢ ( ( 𝐴 × 𝐴 ) ≈ ( ( 𝑥 ∩ 𝐵 ) ∪ ( 𝑥 ∩ 𝐶 ) ) → ( 𝐴 ≼* ( 𝑥 ∩ 𝐵 ) ∨ 𝐴 ≼ ( 𝑥 ∩ 𝐶 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝐴 ≼* ( 𝑥 ∩ 𝐵 ) ∨ 𝐴 ≼ ( 𝑥 ∩ 𝐶 ) ) ) |
| 15 | ssun1 | ⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) | |
| 16 | 2 | adantr | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝐵 ∪ 𝐶 ) ∈ V ) |
| 17 | ssexg | ⊢ ( ( 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐵 ∪ 𝐶 ) ∈ V ) → 𝐵 ∈ V ) | |
| 18 | 15 16 17 | sylancr | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → 𝐵 ∈ V ) |
| 19 | inss2 | ⊢ ( 𝑥 ∩ 𝐵 ) ⊆ 𝐵 | |
| 20 | ssdomg | ⊢ ( 𝐵 ∈ V → ( ( 𝑥 ∩ 𝐵 ) ⊆ 𝐵 → ( 𝑥 ∩ 𝐵 ) ≼ 𝐵 ) ) | |
| 21 | 18 19 20 | mpisyl | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝑥 ∩ 𝐵 ) ≼ 𝐵 ) |
| 22 | domwdom | ⊢ ( ( 𝑥 ∩ 𝐵 ) ≼ 𝐵 → ( 𝑥 ∩ 𝐵 ) ≼* 𝐵 ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝑥 ∩ 𝐵 ) ≼* 𝐵 ) |
| 24 | wdomtr | ⊢ ( ( 𝐴 ≼* ( 𝑥 ∩ 𝐵 ) ∧ ( 𝑥 ∩ 𝐵 ) ≼* 𝐵 ) → 𝐴 ≼* 𝐵 ) | |
| 25 | 24 | expcom | ⊢ ( ( 𝑥 ∩ 𝐵 ) ≼* 𝐵 → ( 𝐴 ≼* ( 𝑥 ∩ 𝐵 ) → 𝐴 ≼* 𝐵 ) ) |
| 26 | 23 25 | syl | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝐴 ≼* ( 𝑥 ∩ 𝐵 ) → 𝐴 ≼* 𝐵 ) ) |
| 27 | ssun2 | ⊢ 𝐶 ⊆ ( 𝐵 ∪ 𝐶 ) | |
| 28 | ssexg | ⊢ ( ( 𝐶 ⊆ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐵 ∪ 𝐶 ) ∈ V ) → 𝐶 ∈ V ) | |
| 29 | 27 16 28 | sylancr | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → 𝐶 ∈ V ) |
| 30 | inss2 | ⊢ ( 𝑥 ∩ 𝐶 ) ⊆ 𝐶 | |
| 31 | ssdomg | ⊢ ( 𝐶 ∈ V → ( ( 𝑥 ∩ 𝐶 ) ⊆ 𝐶 → ( 𝑥 ∩ 𝐶 ) ≼ 𝐶 ) ) | |
| 32 | 29 30 31 | mpisyl | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝑥 ∩ 𝐶 ) ≼ 𝐶 ) |
| 33 | domtr | ⊢ ( ( 𝐴 ≼ ( 𝑥 ∩ 𝐶 ) ∧ ( 𝑥 ∩ 𝐶 ) ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) | |
| 34 | 33 | expcom | ⊢ ( ( 𝑥 ∩ 𝐶 ) ≼ 𝐶 → ( 𝐴 ≼ ( 𝑥 ∩ 𝐶 ) → 𝐴 ≼ 𝐶 ) ) |
| 35 | 32 34 | syl | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝐴 ≼ ( 𝑥 ∩ 𝐶 ) → 𝐴 ≼ 𝐶 ) ) |
| 36 | 26 35 | orim12d | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( ( 𝐴 ≼* ( 𝑥 ∩ 𝐵 ) ∨ 𝐴 ≼ ( 𝑥 ∩ 𝐶 ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
| 37 | 14 36 | mpd | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) ∧ ( ( 𝐴 × 𝐴 ) ≈ 𝑥 ∧ 𝑥 ⊆ ( 𝐵 ∪ 𝐶 ) ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
| 38 | 5 37 | exlimddv | ⊢ ( ( 𝐴 × 𝐴 ) ≼ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |