This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The outer volume is the greatest lower bound on the sum of all interval coverings of A . (Contributed by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovolgelb.1 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) | |
| Assertion | ovolgelb | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolgelb.1 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | simp3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) | |
| 4 | 2 3 | ltaddrpd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) < ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) |
| 5 | 3 | rpred | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 6 | 2 5 | readdcld | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ ) |
| 7 | 2 6 | ltnled | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( vol* ‘ 𝐴 ) < ( ( vol* ‘ 𝐴 ) + 𝐵 ) ↔ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ ( vol* ‘ 𝐴 ) ) ) |
| 8 | 4 7 | mpbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ ( vol* ‘ 𝐴 ) ) |
| 9 | eqid | ⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } | |
| 10 | 9 | ovolval | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| 12 | 11 | breq2d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ ( vol* ‘ 𝐴 ) ↔ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) ) |
| 13 | ssrab2 | ⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ ℝ* | |
| 14 | 6 | rexrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) |
| 15 | infxrgelb | ⊢ ( ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ↔ ∀ 𝑥 ∈ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) | |
| 16 | 13 14 15 | sylancr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ↔ ∀ 𝑥 ∈ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
| 17 | eqeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ↔ 𝑥 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) ) | |
| 18 | 1 | rneqi | ⊢ ran 𝑆 = ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) |
| 19 | 18 | supeq1i | ⊢ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) |
| 20 | 19 | eqeq2i | ⊢ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ↔ 𝑥 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) |
| 21 | 17 20 | bitr4di | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ↔ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 22 | 21 | anbi2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
| 23 | 22 | rexbidv | ⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) ↔ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
| 24 | 23 | ralrab | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ↔ ∀ 𝑥 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
| 25 | ralcom | ⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∀ 𝑥 ∈ ℝ* ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) | |
| 26 | r19.23v | ⊢ ( ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) | |
| 27 | 26 | ralbii | ⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
| 28 | ancomst | ⊢ ( ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) | |
| 29 | impexp | ⊢ ( ( ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ) | |
| 30 | 28 29 | bitri | ⊢ ( ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ) |
| 31 | 30 | ralbii | ⊢ ( ∀ 𝑥 ∈ ℝ* ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ) |
| 32 | elovolmlem | ⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 33 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝑔 ) = ( ( abs ∘ − ) ∘ 𝑔 ) | |
| 34 | 33 1 | ovolsf | ⊢ ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 35 | 32 34 | sylbi | ⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 36 | 35 | frnd | ⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 37 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 38 | 36 37 | sstrdi | ⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ran 𝑆 ⊆ ℝ* ) |
| 39 | supxrcl | ⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) | |
| 40 | 38 39 | syl | ⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 41 | breq2 | ⊢ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ↔ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) | |
| 42 | 41 | imbi2d | ⊢ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
| 43 | 42 | ceqsralv | ⊢ ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* → ( ∀ 𝑥 ∈ ℝ* ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
| 44 | 40 43 | syl | ⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ∀ 𝑥 ∈ ℝ* ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
| 45 | 31 44 | bitrid | ⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ∀ 𝑥 ∈ ℝ* ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
| 46 | 45 | ralbiia | ⊢ ( ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∀ 𝑥 ∈ ℝ* ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 47 | 25 27 46 | 3bitr3i | ⊢ ( ∀ 𝑥 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 48 | 24 47 | bitri | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 49 | 16 48 | bitr2di | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ↔ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) ) |
| 50 | 12 49 | bitr4d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ ( vol* ‘ 𝐴 ) ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
| 51 | 8 50 | mtbid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ¬ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 52 | rexanali | ⊢ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ↔ ¬ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) | |
| 53 | 51 52 | sylibr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 54 | xrltnle | ⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) < ( ( vol* ‘ 𝐴 ) + 𝐵 ) ↔ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) | |
| 55 | xrltle | ⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) < ( ( vol* ‘ 𝐴 ) + 𝐵 ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) | |
| 56 | 54 55 | sylbird | ⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) → ( ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) |
| 57 | 40 14 56 | syl2anr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) |
| 58 | 57 | anim2d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) ) |
| 59 | 58 | reximdva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) ) |
| 60 | 53 59 | mpd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) |