This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From ovolun , it suffices to show that the measure of x is at least the sum of the measures of x i^i A and x \ A . (Contributed by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismbl2 | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbl | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) | |
| 2 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) | |
| 3 | inundif | ⊢ ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∖ 𝐴 ) ) = 𝑥 | |
| 4 | 3 | fveq2i | ⊢ ( vol* ‘ ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∖ 𝐴 ) ) ) = ( vol* ‘ 𝑥 ) |
| 5 | inss1 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 | |
| 6 | simprl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → 𝑥 ⊆ ℝ ) | |
| 7 | 5 6 | sstrid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( 𝑥 ∩ 𝐴 ) ⊆ ℝ ) |
| 8 | ovolsscl | ⊢ ( ( ( 𝑥 ∩ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 9 | 5 8 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) |
| 11 | difss | ⊢ ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 | |
| 12 | 11 6 | sstrid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( 𝑥 ∖ 𝐴 ) ⊆ ℝ ) |
| 13 | ovolsscl | ⊢ ( ( ( 𝑥 ∖ 𝐴 ) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 14 | 11 13 | mp3an1 | ⊢ ( ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) |
| 16 | ovolun | ⊢ ( ( ( ( 𝑥 ∩ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ℝ ) ∧ ( ( 𝑥 ∖ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) | |
| 17 | 7 10 12 15 16 | syl22anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝑥 ∩ 𝐴 ) ∪ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) |
| 18 | 4 17 | eqbrtrrid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ 𝑥 ) ≤ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) |
| 19 | simprr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) | |
| 20 | 10 15 | readdcld | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 21 | 19 20 | letri3d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ↔ ( ( vol* ‘ 𝑥 ) ≤ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ∧ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| 22 | 18 21 | mpbirand | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ) → ( ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ↔ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) |
| 23 | 22 | expr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ⊆ ℝ ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ↔ ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| 24 | 23 | pm5.74d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ⊆ ℝ ) → ( ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| 25 | 2 24 | sylan2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝒫 ℝ ) → ( ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| 26 | 25 | ralbidva | ⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| 27 | 26 | pm5.32i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |
| 28 | 1 27 | bitri | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) |