This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmssubm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| tsmssubm.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsmssubm.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsmssubm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | ||
| tsmssubm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| tsmssubm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | ||
| Assertion | tsmssubm | ⊢ ( 𝜑 → ( 𝐻 tsums 𝐹 ) = ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmssubm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | tsmssubm.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | tsmssubm.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 4 | tsmssubm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 5 | tsmssubm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 6 | tsmssubm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 7 | 6 | submbas | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 9 | 8 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 10 | 9 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) ) |
| 11 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ∧ 𝑥 ∈ 𝑆 ) ) | |
| 12 | 11 | biancomi | ⊢ ( 𝑥 ∈ ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 14 | 13 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 15 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 17 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 18 | eqid | ⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) | |
| 19 | 5 15 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐺 ) ) |
| 20 | 13 17 18 2 3 1 19 | eltsms | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |
| 21 | 20 | baibd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
| 22 | 16 21 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
| 23 | vex | ⊢ 𝑢 ∈ V | |
| 24 | 23 | inex1 | ⊢ ( 𝑢 ∩ 𝑆 ) ∈ V |
| 25 | 24 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ) → ( 𝑢 ∩ 𝑆 ) ∈ V ) |
| 26 | 6 17 | resstopn | ⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( TopOpen ‘ 𝐻 ) |
| 27 | 26 | eleq2i | ⊢ ( 𝑣 ∈ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ↔ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ) |
| 28 | fvex | ⊢ ( TopOpen ‘ 𝐺 ) ∈ V | |
| 29 | elrest | ⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ V ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑣 ∈ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ↔ ∃ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ) | |
| 30 | 28 4 29 | sylancr | ⊢ ( 𝜑 → ( 𝑣 ∈ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ↔ ∃ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑣 ∈ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ↔ ∃ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ) |
| 32 | 27 31 | bitr3id | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ↔ ∃ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ) |
| 33 | eleq2 | ⊢ ( 𝑣 = ( 𝑢 ∩ 𝑆 ) → ( 𝑥 ∈ 𝑣 ↔ 𝑥 ∈ ( 𝑢 ∩ 𝑆 ) ) ) | |
| 34 | elin | ⊢ ( 𝑥 ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑆 ) ) | |
| 35 | 34 | rbaib | ⊢ ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ ( 𝑢 ∩ 𝑆 ) ↔ 𝑥 ∈ 𝑢 ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝑢 ∩ 𝑆 ) ↔ 𝑥 ∈ 𝑢 ) ) |
| 37 | 33 36 | sylan9bbr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( 𝑥 ∈ 𝑣 ↔ 𝑥 ∈ 𝑢 ) ) |
| 38 | eleq2 | ⊢ ( 𝑣 = ( 𝑢 ∩ 𝑆 ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ↔ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ) ) | |
| 39 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 40 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 41 | 6 | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
| 42 | 4 41 | syl | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 43 | 6 | subcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐻 ∈ CMnd ) |
| 44 | 2 42 43 | syl2anc | ⊢ ( 𝜑 → 𝐻 ∈ CMnd ) |
| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐻 ∈ CMnd ) |
| 46 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) | |
| 47 | 46 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
| 48 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝑆 ) |
| 49 | elfpw | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ Fin ) ) | |
| 50 | 49 | simplbi | ⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
| 51 | 50 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
| 52 | 48 51 | fssresd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑆 ) |
| 53 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 54 | 53 | feq3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑆 ↔ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( Base ‘ 𝐻 ) ) ) |
| 55 | 52 54 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( Base ‘ 𝐻 ) ) |
| 56 | fvex | ⊢ ( 0g ‘ 𝐻 ) ∈ V | |
| 57 | 56 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 0g ‘ 𝐻 ) ∈ V ) |
| 58 | 52 47 57 | fdmfifsupp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑦 ) finSupp ( 0g ‘ 𝐻 ) ) |
| 59 | 39 40 45 47 55 58 | gsumcl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 60 | 59 53 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑆 ) |
| 61 | elin | ⊢ ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ∧ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑆 ) ) | |
| 62 | 61 | rbaib | ⊢ ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑆 → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
| 63 | 60 62 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
| 64 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 65 | 47 64 52 6 | gsumsubm | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) = ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
| 66 | 65 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ↔ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
| 67 | 63 66 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
| 68 | 38 67 | sylan9bbr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
| 69 | 68 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
| 70 | 69 | imbi2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
| 71 | 70 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
| 72 | 71 | rexbidv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
| 73 | 37 72 | imbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
| 74 | 25 32 73 | ralxfr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
| 75 | 22 74 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) |
| 76 | 75 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ↔ ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) ) |
| 77 | 12 76 | bitrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) ) |
| 78 | eqid | ⊢ ( TopOpen ‘ 𝐻 ) = ( TopOpen ‘ 𝐻 ) | |
| 79 | resstps | ⊢ ( ( 𝐺 ∈ TopSp ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝑆 ) ∈ TopSp ) | |
| 80 | 3 4 79 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ↾s 𝑆 ) ∈ TopSp ) |
| 81 | 6 80 | eqeltrid | ⊢ ( 𝜑 → 𝐻 ∈ TopSp ) |
| 82 | 8 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝑆 ↔ 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) ) |
| 83 | 5 82 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) |
| 84 | 39 78 18 44 81 1 83 | eltsms | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐻 tsums 𝐹 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) ) |
| 85 | 10 77 84 | 3bitr4rd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐻 tsums 𝐹 ) ↔ 𝑥 ∈ ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ) ) |
| 86 | 85 | eqrdv | ⊢ ( 𝜑 → ( 𝐻 tsums 𝐹 ) = ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ) |