This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxfr2d.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝑉 ) | |
| ralxfr2d.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) ) | ||
| ralxfr2d.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | ralxfr2d | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr2d.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝑉 ) | |
| 2 | ralxfr2d.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) ) | |
| 3 | ralxfr2d.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 5 | 1 4 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 𝑥 = 𝐴 ) |
| 6 | 2 | biimprd | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 7 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 9 | 8 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 10 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 11 | 9 10 | mpbidi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
| 12 | 11 | exlimdv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
| 13 | 5 12 | mpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
| 14 | 2 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 15 | 13 14 3 | ralxfrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |